Skip to main content
Log in

Maize ZmFDR3 localized in chloroplasts is involved in iron transport

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Iron is an essential nutrient for plant metabolism such that Fe-limited plants display chlorosis and suffer from reduced photosynthetic efficiency. Differential display previously identified genes whose expression was elevated in Fe-deficient maize roots. Here, we describe the functional characterization of one of the genes identified in the screen, ZmFDR3 (Zea maize Fe-deficiency-related). Heterologous functional complementation assays using a yeast iron uptake mutant showed that ZmFDR3 functions in iron transport. ZmFDR3 contains a domain found in FliN-proteins of the type III secretion system and is predicted to localize to the thylakoid of plastids. Fluorescence immunocytochemistry showed that ZmFDR3 is localized in the plastids of roots, stems and leaves, with high expression found in guard cell chloroplasts. Transgenic tobacco expressing a 35S-ZmFDR3 construct contains elevated iron content, displays well arranged thylakoid membranes and has photosynthetic indices that are higher than those of the wild type. Together, these results suggest that ZmFDR3 functions in chloroplast iron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briat J F, Curie C, Gaymard F. Iron utilization and metabolism in plants. Curr Opin Plant Biol, 2007, 10: 276–282 17434791, 10.1016/j.pbi.2007.04.003, 1:CAS:528:DC%2BD2sXlt1Sit7w%3D

    Article  PubMed  CAS  Google Scholar 

  2. Guerinot M, Yi Y. Iron: nutritious, noxious, and not readily available. Plant Physiol, 1994, 104: 815–820 12232127, 1:CAS:528:DyaK2cXis1yqu70%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Yin L P, Huang Q N, Wu P. Plant nutritional molecular biology and signal transduction(Znd). Beijing: Science Press, 2006. 161–208

    Google Scholar 

  4. Wu H L, Wang N, Ling H Q. Uptake, translocation and regulation of iron in plants. Bull Bot, 2007, 24: 779–788 1:CAS:528:DC%2BD1cXjslOn

    CAS  Google Scholar 

  5. Roberts L A, Pierson A J, Panaviene Z, et al. Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol, 2004, 135: 112–120 15107503, 10.1104/pp.103.037572, 1:CAS:528:DC%2BD2cXkt12ntb4%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Waters B M, Chu H H, DiDonato R J, et al. Mutations in Arabidopsis yellow stripelike1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol, 2006, 141: 1446–1458 16815956, 10.1104/pp.106.082586, 1:CAS:528:DC%2BD28XosVKit7k%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Kim S A, Guerinot M L. Mining iron: Iron uptake and transport in plants. FEBS Lett, 2007, 581: 2273–2280 17485078, 10.1016/j.febslet.2007.04.043, 1:CAS:528:DC%2BD2sXls1aiu7o%3D

    Article  PubMed  CAS  Google Scholar 

  8. Briat J, Fobis-Loisy I, Grignon N, et al. Cellular and molecular aspects of iron metabolism in plants. Biol Cell, 1995, 84: 69–81 10.1016/0248-4900(96)81320-7, 1:CAS:528:DyaK28Xhtl2mur4%3D

    Article  CAS  Google Scholar 

  9. Terry N, Abadia J. Function of iron in chloroplasts. J Plant Nutr, 1986, 9: 609–646 10.1080/01904168609363470, 1:CAS:528:DyaL28XkslGrt70%3D

    Article  CAS  Google Scholar 

  10. Nakai K, Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics, 1992, 14: 897–911 1478671, 10.1016/S0888-7543(05)80111-9, 1:CAS:528:DyaK3sXhs1Clsbw%3D

    Article  PubMed  CAS  Google Scholar 

  11. Shingles R, North M, McCarty R E. Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol, 2002, 128: 1022–1030 11891257, 10.1104/pp.010858, 1:CAS:528:DC%2BD38Xit1GqtLw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Kramer U, Talke I N, Hanikenne M. Transition metal transport. FEBS Lett, 2007, 581: 2263–2272 17462635, 10.1016/j.febslet.2007.04.010

    Article  PubMed  Google Scholar 

  13. Duy D, Wanner G, Meda A R, et al. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell, 2007, 19: 986–1006 17337631, 10.1105/tpc.106.047407, 1:CAS:528:DC%2BD2sXltFyqu70%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Yin L P, Qi X T, Liu X L, et at. The construction of maize root cDNA library induced under iron deficiency and screening and identification of iron stress gene (fdr3). Beijing Science Press, 2000. 45: 44–48

    Google Scholar 

  15. Yin L P, Qi X T. Cellular and molecular biology techniques tutorial. Beijing: Science Press, 2005, 167–177

    Google Scholar 

  16. Braun D M, Ma Y, Inada N, et al. Tie-dyed1 regulates carbohydrate accumulation in maize leaves. Plant Physiol, 2006, 142: 1511–1522 17071639, 10.1104/pp.106.090381, 1:CAS:528:DC%2BD28XhtlCns7vO

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Ou L J, Chen Z, Dai X J, et al. Photosynthetic characteristics of a new yellow-green mutant with high photosynthetic rate in rice (Oryza sativa L.). Photosynthetica 2008, 46: 395–399 10.1007/s11099-008-0071-3, 1:CAS:528:DC%2BD1cXhtFaisbbF

    Article  CAS  Google Scholar 

  18. Haydon M J, Cobbett C S. Transporters of ligands for essential metal ions in plants. New Phytol, 2007, 174: 499–506 17447906, 10.1111/j.1469-8137.2007.02051.x, 1:CAS:528:DC%2BD2sXmsFOktL0%3D

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi M, Terada Y, Nakai I, et al. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 2003, 15: 1263–1280 12782722, 10.1105/tpc.010256, 1:CAS:528:DC%2BD3sXkvVeksbo%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Schaaf G, Ludewig U, Erenoglu B E, et al. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem, 2004, 279: 9091–9096 14699112, 10.1074/jbc.M311799200, 1:CAS:528:DC%2BD2cXhs1Omsrs%3D

    Article  PubMed  CAS  Google Scholar 

  21. Lin J K, Xiong J F, Zhong T Y, et at. Explore relationship between chlorophyll content and photosynthetic rate of suitable Oolong tea varieties. Tea in Fu Jian, 1998, 4: 11–13

    Google Scholar 

  22. Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA, 1996, 93: 5624–5628 8643627, 10.1073/pnas.93.11.5624, 1:CAS:528:DyaK28Xjt1Ojt7w%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Sani M, Allaoui A, Fusetti F, et al. Structural organization of the needle complex of the type III secretion apparatus of Shigella flexneri. Micron, 2007, 38: 291–301 16920362, 10.1016/j.micron.2006.04.007, 1:CAS:528:DC%2BD2sXnvFChug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  24. Wang X Y, Xu R F. Salmonella enterica pathogenicity islands encoding type III secretion systems. Biotechnol Commun, 2004, 15: 160–162

    Google Scholar 

  25. Zhou Y Y, Xu J G. Invasion of intestinal pathogenic bacterial type III secretion system. Chin Zoon, 2003, 19: 102–105 1:CAS:528:DC%2BD2cXktlynsrk%3D

    CAS  Google Scholar 

  26. Dyall S D, Brown M T, Johnson P. Ancient invasions: from endosymbionts to organelles. Science, 2004, 304: 253–257 15073369, 10.1126/science.1094884, 1:CAS:528:DC%2BD2cXivV2isbc%3D

    Article  PubMed  CAS  Google Scholar 

  27. Martin W, Rujan T, Richly E, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA, 2002, 99: 12246–12251 12218172, 10.1073/pnas.182432999, 1:CAS:528:DC%2BD38XntlCks70%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Timmis J N, Ayliffe M A, Huang C Y, et al. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev. Genet, 2004, 5: 123–135 14735123, 10.1038/nrg1271, 1:CAS:528:DC%2BD2cXptVOhtw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  29. Gutensohn M, Fan E, Frielingsdorf S, et al. Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts. J Plant Physiol, 2006, 163: 333–347 16386331, 10.1016/j.jplph.2005.11.009, 1:CAS:528:DC%2BD28XislSmtb8%3D

    Article  PubMed  CAS  Google Scholar 

  30. Schunemann D. Mechanisms of protein import into thylakoids of chloroplasts. Biol Chem, 2007, 388: 907–915 17696774, 10.1515/BC.2007.111

    Article  PubMed  Google Scholar 

  31. Cline K, Henry R, Li C J, et al. Multiple pathways for protein transport into or across the thylakoid membrane. Embo J, 1993, 12: 4105–4114 8223427, 1:CAS:528:DyaK2cXntlKntg%3D%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Pan R CH. Plant physiology (Fourth edition). Beijing: Higher Education Press, 2003. 64–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiPing Yin.

Additional information

Supported by the National Natural Science Foundation (Grant No. 30770178) and Beijing Municipal Natural Science Foundation Key Fund Projects (B) (Grant No. KZ200710028013)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Song, X., Li, P. et al. Maize ZmFDR3 localized in chloroplasts is involved in iron transport. SCI CHINA SER C 52, 864–871 (2009). https://doi.org/10.1007/s11427-009-0108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0108-2

Keywords

Navigation