Skip to main content
Log in

Current progress and prospects of induced pluripotent stem cells

  • Special Topic Review
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Induced pluripotent stem (iPS) cells are derived from somatic cells by ectopic expression of few transcription factors. Like embryonic stem (ES) cells, iPS cells are able to self-renew indefinitely and to differentiate into all types of cells in the body. iPS cells hold great promise for regenerative medicine, because iPS cells circumvent not only immunological rejection but also ethical issues. Since the first report on the derivation of iPS cells in 2006, many laboratories all over the world started research on iPS cells and have made significant progress. This paper reviews recent progress in iPS cell research, including the methods to generate iPS cells, the molecular mechanism of reprogramming in the formation of iPS cells, and the potential applications of iPS cells in cell replacement therapy. Current problems that need to be addressed and the prospects for iPS research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagy A, Gócza E, Diaz E M, et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development, 1990, 110: 815–821, 2088722, 1:STN:280:DyaK3M3gvFaguw%3D%3D

    PubMed  CAS  Google Scholar 

  2. Poueymirou W T, Auerbach W, Frendewey D, et al. F0 generation mice fully derived from gene-targeted embryonic stem cells allowing immediate phenotypic analyses. Nat Biotechnol, 2007, 25: 91–99, 17187059, 10.1038/nbt1263, 1:CAS:528:DC%2BD2sXis1Gkuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  3. Huang J, Deng K, Wu H, et al. Efficient production of mice from embryonic stem cells injected into four- or eight-cell embryos by piezo micromanipulation. Stem Cells, 2008, 26: 1883–1890, 18467666, 10.1634/stemcells.2008-0164, 1:CAS:528:DC%2BD1cXpvV2lsr0%3D

    Article  PubMed  CAS  Google Scholar 

  4. Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292: 154–156, 7242681, 10.1038/292154a0, 1:STN:280:DyaL3M3itV2qsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981, 78: 7634–7638, 6950406, 10.1073/pnas.78.12.7634, 1:STN:280:DyaL387ltV2htg%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kim K, Lerou P, Yabuuchi A, et al. Histocompatible embryonic stem cells by parthenogenesis. Science, 2007, 315: 482–486, 17170255, 10.1126/science.1133542, 1:CAS:528:DC%2BD2sXotFCiuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  7. Munsie M J, Michalska A E, O’Brien C M, et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr Biol, 2000, 10: 989–992, 10985386, 10.1016/S0960-9822(00)00648-5, 1:CAS:528:DC%2BD3cXmtVGiurg%3D

    Article  PubMed  CAS  Google Scholar 

  8. Cowan C A, Atienza J, Melton D A, et al. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005, 309: 1369–1373, 16123299, 10.1126/science.1116447, 1:CAS:528:DC%2BD2MXovVOjtLw%3D

    Article  PubMed  CAS  Google Scholar 

  9. Guan K, Nayernia K, Maier L S, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 2006, 440: 1199–1203, 16565704, 10.1038/nature04697, 1:CAS:528:DC%2BD28XjvVGltbw%3D

    Article  PubMed  CAS  Google Scholar 

  10. Conrad S, Renninger M, Hennenlotter J, et al. Generation of pluripotent stem cells from adult human testis. Nature, 2008, 456: 344–349, 18849962, 10.1038/nature07404, 1:CAS:528:DC%2BD1cXhsVSjsLjI

    Article  PubMed  CAS  Google Scholar 

  11. Kanatsu-Shinohara M, Inoue K, Lee J, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell, 2004, 119: 1001–1012, 15620358, 10.1016/j.cell.2004.11.011, 1:CAS:528:DC%2BD2MXltlSiuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  12. Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature, 2006, 441: 1061–1067, 16810240, 10.1038/nature04955, 1:CAS:528:DC%2BD28Xmtlahsrg%3D

    Article  PubMed  CAS  Google Scholar 

  13. Shamblott M J, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA, 1998, 95: 13726–13731, 9811868, 10.1073/pnas.95.23.13726, 1:CAS:528:DyaK1cXnsVGhur0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Matsui Y, Toksoz D, Nishikawa S, et al. Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature, 1991, 353: 750–752, 1719421, 10.1038/353750a0, 1:STN:280:DyaK38%2FkvFOjsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  15. Brons I G, Smithers L E, Trotter M W, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 2007, 448: 191–195, 17597762, 10.1038/nature05950, 1:CAS:528:DC%2BD2sXnsFeisbw%3D

    Article  PubMed  CAS  Google Scholar 

  16. Tesar P J, Chenoweth J G, Brook F A, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007, 448: 196–199, 17597760, 10.1038/nature05972, 1:CAS:528:DC%2BD2sXnsFeisbk%3D

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663–676, 16904174, 10.1016/j.cell.2006.07.024, 1:CAS:528:DC%2BD28Xpt1aktbs%3D

    Article  PubMed  CAS  Google Scholar 

  18. Tokuzawa Y, Kaiho E, Maruyama M, et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol, 2003, 23: 2699–2708, 12665572, 10.1128/MCB.23.8.2699-2708.2003, 1:CAS:528:DC%2BD3sXktV2lsbg%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113: 643–655, 12787505, 10.1016/S0092-8674(03)00392-1, 1:CAS:528:DC%2BD3sXksFehur8%3D

    Article  PubMed  CAS  Google Scholar 

  20. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95: 379–391, 9814708, 10.1016/S0092-8674(00)81769-9, 1:CAS:528:DyaK1cXntlCqt74%3D

    Article  PubMed  CAS  Google Scholar 

  21. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003, 113: 631–642, 12787504, 10.1016/S0092-8674(03)00393-3, 1:CAS:528:DC%2BD3sXksFehur4%3D

    Article  PubMed  CAS  Google Scholar 

  22. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature, 2007, 448: 313–317, 17554338, 10.1038/nature05934, 1:CAS:528:DC%2BD2sXnvVeqsL0%3D

    Article  PubMed  CAS  Google Scholar 

  23. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448: 318–324, 17554336, 10.1038/nature05944, 1:CAS:528:DC%2BD2sXnvVeqsLg%3D

    Article  PubMed  CAS  Google Scholar 

  24. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007, 1: 55–70, 18371336, 10.1016/j.stem.2007.05.014, 1:CAS:528:DC%2BD2sXptV2rs74%3D

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131: 861–872, 18035408, 10.1016/j.cell.2007.11.019, 1:CAS:528:DC%2BD2sXhsVCntbbK

    Article  PubMed  CAS  Google Scholar 

  26. Yu J, Vodyanik M A, muga-OttoK S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318: 1917–1920, 18029452, 10.1126/science.1151526, 1:CAS:528:DC%2BD2sXhsVGjsLbN

    Article  PubMed  CAS  Google Scholar 

  27. Park I H, Zhao R, West J A, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451: 141–146, 18157115, 10.1038/nature06534, 1:CAS:528:DC%2BD1cXksVGhtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  28. Lowry W E, Richter L, Yachechko R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA, 2008, 105: 2883–2888, 18287077, 10.1073/pnas.0711983105, 1:CAS:528:DC%2BD1cXjtVSisr0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Park I H, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell, 2008, 134: 877–886, 18691744, 10.1016/j.cell.2008.07.041, 1:CAS:528:DC%2BD1cXhtFCqs7bK

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Dimos J T, Rodolfa K T, Niakan K K, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 2008, 321: 1218–1221, 18669821, 10.1126/science.1158799, 1:CAS:528:DC%2BD1cXhtVGgt7zL

    Article  PubMed  CAS  Google Scholar 

  31. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol, 2008, 26: 1269–1275, 18849973, 10.1038/nbt.1502, 1:CAS:528:DC%2BD1cXhtlCktrvE

    Article  PubMed  CAS  Google Scholar 

  32. Aasen T, Raya A, Barrero M J, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol, 2008, 26: 1276–1284, 18931654, 10.1038/nbt.1503, 1:CAS:528:DC%2BD1cXhtlCktrvO

    Article  PubMed  CAS  Google Scholar 

  33. Maherali N, Ahfeldt T, Rigamonti A, et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell, 2008, 3: 340–345, 18786420, 10.1016/j.stem.2008.08.003, 1:CAS:528:DC%2BD1cXhtF2jtr%2FJ

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Hockemeyer D, Soldner F, Cook E G, et al. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell, 2008, 3: 346–353, 18786421, 10.1016/j.stem.2008.08.014, 1:CAS:528:DC%2BD1cXhtF2jtr%2FK

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Liu H, Zhu F, Yong J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell, 2008, 3: 587–590, 19041774, 10.1016/j.stem.2008.10.014, 1:CAS:528:DC%2BD1cXhsFCqsLjN

    Article  PubMed  CAS  Google Scholar 

  36. Li W, Wei W, Zhu S, et al. Generation of Rat and Human Induced Pluripotent Stem Cells by Combining Genetic Reprogramming and Chemical Inhibitors. Cell Stem Cell, 2009, 4: 16–19, 19097958, 10.1016/j.stem.2008.11.014

    Article  PubMed  Google Scholar 

  37. Liao J, Cui C, Chen S, et al. Generation of Induced Pluripotent Stem Cell Lines from Adult Rat Cells. Cell Stem Cell, 2009, 4: 11–15, 19097959, 10.1016/j.stem.2008.11.013, 1:CAS:528:DC%2BD1MXhtVSksrk%3D

    Article  PubMed  CAS  Google Scholar 

  38. Esteban M A, Xu J, Yang J, et al. Generation of induced pluripotent stem cell lines from tibetan miniature pig. J Biol Chem, 2009, 284: 17634–17640, 19376775, 10.1074/jbc.M109.008938, 1:CAS:528:DC%2BD1MXnsVWks7g%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Wu Z, Chen J, Ren J, et al. Generation of pig-induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol, 2009, doi:10.10931jmcb/mjp003

  40. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol, 2007, 25: 1177–1181, 17724450, 10.1038/nbt1335, 1:CAS:528:DC%2BD2sXhtFagt7rL

    Article  PubMed  CAS  Google Scholar 

  41. Qin D, Li W, Zhang J, et al. Direct generation of ES-like cells from unmodified mouse embryonic fibroblasts by Oct4/Sox2/Myc/Klf4. Cell Res, 2007, 17: 959–962, 17971807, 10.1038/cr.2007.92, 1:CAS:528:DC%2BD2sXhtlWjsbvJ

    Article  PubMed  CAS  Google Scholar 

  42. Zhao Y, Yin X, Qin H, et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 2008, 3: 475–479, 18983962, 10.1016/j.stem.2008.10.002, 1:CAS:528:DC%2BD1cXhsVaqs77K

    Article  PubMed  CAS  Google Scholar 

  43. Meyer N, Penn L Z. Reflecting on 25 years with MYC. Nat Rev Cancer, 2008, 8: 976–990, 19029958, 10.1038/nrc2231, 1:CAS:528:DC%2BD1cXhsVWhu7rJ

    Article  PubMed  CAS  Google Scholar 

  44. Rowland B D, Peeper D S. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer, 2006, 6: 11–23, 16372018, 10.1038/nrc1780, 1:CAS:528:DC%2BD28Xht1GgsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  45. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 2008, 26: 101–106, 18059259, 10.1038/nbt1374, 1:CAS:528:DC%2BD1cXisFGmuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  46. Wernig M, Meissner A, Cassady J P, et al. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2008, 2: 10–12, 18371415, 10.1016/j.stem.2007.12.001, 1:CAS:528:DC%2BD1cXhtFOltrc%3D

    Article  PubMed  CAS  Google Scholar 

  47. Hanna, J, M Wernig, S Markoulaki, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 2007, 318: 1920–1923, 18063756, 10.1126/science.1152092, 1:CAS:528:DC%2BD2sXhsVGjsLbP

    Article  PubMed  CAS  Google Scholar 

  48. Stadtfeld M, Maherali N, Breault D T, et al. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008, 2: 230–240, 18371448, 10.1016/j.stem.2008.02.001, 1:CAS:528:DC%2BD1cXjslegtrw%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Brambrink T, Foreman R, Welstead G G, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell, 2008, 2: 151–159, 18371436, 10.1016/j.stem.2008.01.004, 1:CAS:528:DC%2BD1cXitlygtbw%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Sommer C A, Stadtfeld M, Murphy G J, et al. iPS cell generation using a single lentiviral stem cell cassette. Stem Cells, 2008, 27: 543–549, 10.1634/stemcells.2008-1075

    Article  Google Scholar 

  51. Carey B W, Markoulaki S, Hanna J, et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci U S A, 2009, 106: 157–162, 19109433, 10.1073/pnas.0811426106, 1:CAS:528:DC%2BD1MXltF2msg%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Aoi T, Yae K, Nakagawa M, et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science, 2008, 321: 699–702, 18276851, 10.1126/science.1154884, 1:CAS:528:DC%2BD1cXptVKnu78%3D

    Article  PubMed  CAS  Google Scholar 

  53. Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322: 945–949, 18818365, 10.1126/science.1162494, 1:CAS:528:DC%2BD1cXhtlaltLzN

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 2009, 458: 771–775, 19252477, 10.1038/nature07864, 1:CAS:528:DC%2BD1MXisVOrtbk%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science, 2008, 322: 949–953, 18845712, 10.1126/science.1164270, 1:CAS:528:DC%2BD1cXhtlaltLzO

    Article  PubMed  CAS  Google Scholar 

  56. Woltjen K, Michael I P, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458: 766–770, 19252478, 10.1038/nature07863, 1:CAS:528:DC%2BD1MXisVOrtr0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Zhou H, Wu S, Joo J Y, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 2009, 4: 381–384, 19398399, 10.1016/j.stem.2009.04.005, 1:CAS:528:DC%2BD1MXlvVGjtLw%3D

    Article  PubMed  CAS  Google Scholar 

  58. Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 2008, 133: 250–264, 18423197, 10.1016/j.cell.2008.03.028, 1:CAS:528:DC%2BD1cXltlWnu78%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Mikkelsen T S, Hanna J, Zhang X, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature, 2008, 454: 49–55, 18509334, 10.1038/nature07056, 1:CAS:528:DC%2BD1cXotVertb4%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Marson A, Foreman R, Chevalier B, et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 2008, 3: 132–135, 18682236, 10.1016/j.stem.2008.06.019, 1:CAS:528:DC%2BD1cXhtVegtr7N

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol, 2008, 26: 795–797, 18568017, 10.1038/nbt1418, 1:CAS:528:DC%2BD1cXot1entL0%3D

    Article  PubMed  CAS  Google Scholar 

  62. Feng B, Jiang J, Kraus P, et al. Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol, 2009, 11: 197–203, 19136965, 10.1038/ncb1827, 1:CAS:528:DC%2BD1MXht1Oqt78%3D

    Article  PubMed  CAS  Google Scholar 

  63. Kim J B, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008, 454: 646–650, 18594515, 10.1038/nature07061, 1:CAS:528:DC%2BD1cXptFOksrY%3D

    Article  PubMed  CAS  Google Scholar 

  64. Eminli S, Utikal J, Arnold K, et al. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells, 2008, 26: 2467–2474, 18635867, 10.1634/stemcells.2008-0317, 1:CAS:528:DC%2BD1cXhtlyku7rM

    Article  PubMed  CAS  Google Scholar 

  65. Shi Y, Do J T, Desponts C, et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2008, 2: 525–528, 18522845, 10.1016/j.stem.2008.05.011, 1:CAS:528:DC%2BD1cXntFalsLo%3D

    Article  PubMed  CAS  Google Scholar 

  66. Shi Y, Desponts C, Do J T, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 2008, 3: 568–574, 18983970, 10.1016/j.stem.2008.10.004, 1:CAS:528:DC%2BD1cXhsVaqs7%2FJ

    Article  PubMed  CAS  Google Scholar 

  67. Silva J, Barrandon O, Nichols J, et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol, 2008, 6: e253, 18942890, 10.1371/journal.pbio.0060253

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim J B, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stem cells. Cell, 2009, 136: 411–419, 19203577, 10.1016/j.cell.2009.01.023, 1:CAS:528:DC%2BD1MXltFSnsr4%3D

    Article  PubMed  CAS  Google Scholar 

  69. Ebert A D, Yu J, Rose F F Jr, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009, 457: 277–280, 19098894, 10.1038/nature07677, 1:CAS:528:DC%2BD1MXlvFWnsw%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Loh Y H, Agarwal S, Park I H, et al. Generation of induced pluripotent stem cells from human blood. Blood, 2009, 113: 5476–5479, 19299331, 10.1182/blood-2009-02-204800, 1:CAS:528:DC%2BD1MXntVertbs%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009, 324: 797–801, 19325077, 10.1126/science.1172482, 1:CAS:528:DC%2BD1MXlsVeksrk%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Kim D, Kim C H, Moon J I, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009, 4: 472–476, 19481515, 10.1016/j.stem.2009.05.005, 1:CAS:528:DC%2BD1MXnt1Ggt7o%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Lin S L, Chang D C, Chang-Lin S, et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 2008, 14: 2115–2124, 18755840, 10.1261/rna.1162708, 1:CAS:528:DC%2BD1cXht1ektLfK

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 2009, 136: 964–977, 19269371, 10.1016/j.cell.2009.02.013, 1:CAS:528:DC%2BD1MXltFSnsb0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Boyer L A, Lee T I, Cole M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005, 122: 947–956, 16153702, 10.1016/j.cell.2005.08.020, 1:CAS:528:DC%2BD2MXhtVOrurbJ

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Loh Y H, Wu Q, Chew J L, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 2006, 38: 431–440, 16518401, 10.1038/ng1760, 1:CAS:528:DC%2BD28XivFSht7c%3D

    Article  PubMed  CAS  Google Scholar 

  77. Jiang J, Chan Y S, Loh Y H, et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol, 2008, 10: 353–360, 18264089, 10.1038/ncb1698

    Article  PubMed  Google Scholar 

  78. Kim J, Chu J, Shen X, et al. An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 2008, 132: 1049–1061, 18358816, 10.1016/j.cell.2008.02.039, 1:CAS:528:DC%2BD1cXkt1WqsLg%3D

    Article  PubMed  CAS  Google Scholar 

  79. Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 2008, 133: 1106–1117, 18555785, 10.1016/j.cell.2008.04.043, 1:CAS:528:DC%2BD1cXnsF2gurw%3D

    Article  PubMed  CAS  Google Scholar 

  80. Marson A, Levine S S, Cole M F, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 2008, 134: 521–533, 18692474, 10.1016/j.cell.2008.07.020, 1:CAS:528:DC%2BD1cXhtVSis7zO

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Sridharan R, Tchieu J, Mason M J, et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell, 2009, 136: 364–377, 19167336, 10.1016/j.cell.2009.01.001, 1:CAS:528:DC%2BD1MXhs1Kiu7s%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Viswanathan S R, Daley G Q, Gregory R I. Selective Blockade of MicroRNA Processing by Lin-28. Science, 2008, 320: 97–100, 18292307, 10.1126/science.1154040, 1:CAS:528:DC%2BD1cXktVKht7k%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Judson R L, Babiarz J E, Venere M, et al. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol, 2009, 27: 459–461, 19363475, 10.1038/nbt.1535, 1:CAS:528:DC%2BD1MXksVekt78%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Marion R M, Strati K, Li H, et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 2009, 4: 141–154, 19200803, 10.1016/j.stem.2008.12.010, 1:CAS:528:DC%2BD1MXitFSjtLk%3D

    Article  PubMed  CAS  Google Scholar 

  85. Xu D, Alipio Z, Fink L M, et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA, 2009, 106: 808–813, 19139414, 10.1073/pnas.0812090106, 1:CAS:528:DC%2BD1MXht12isb0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Raya A, Rodriguez-Piza I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009, doi: 10.1038/nature08129

  87. Lu S J, Feng Q, Park J S, et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood, 2008, 112: 4475–4484, 18713948, 10.1182/blood-2008-05-157198, 1:CAS:528:DC%2BD1cXhsVCltb3I

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Wernig M, Zhao J P, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA, 2008, 105: 5856–5861, 18391196, 10.1073/pnas.0801677105, 1:CAS:528:DC%2BD1cXltVyis70%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation, 2008, 118: 498–506, 18625891, 10.1161/CIRCULATIONAHA.108.769562

    Article  PubMed  Google Scholar 

  90. Zhang J, Wilson G F, Soerens A G, et al. Functional Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells. Circ Res, 2009, 104: e30–41, 19213953, 10.1161/CIRCRESAHA.108.192237, 1:CAS:528:DC%2BD1MXhvFejtb4%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Park T S, Galic Z, Conway A E, et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by co-culture with human fetal gonadal cell. Stem Cells, 2009, 27: 783–795, 19350678, 10.1002/stem.13, 1:CAS:528:DC%2BD1MXmt1WnsLs%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Choi K, Yu J, Smuga-Otto K, et al. Hematopoietic and enodthelial differentiation of human induced pluripotent stem cells. Stem Cells, 2009, 27: 559–567, 19259936, 1:CAS:528:DC%2BD1MXkvVKgur4%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Couzin J. Biotechnology. Celebration and concern over U.S. trial of embryonic stem cells. Science, 2009, 323: 568, 19179496, 10.1126/science.323.5914.568, 1:CAS:528:DC%2BD1MXhsVKmtLc%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingYi Chen.

Additional information

Supported by the National Key Basic Research and Development Program of China (Grant No. 2009CB941000), the Ministry of Science and Technology of China, and the transgenic program (Grant No. 2009ZX08006-010B), the National Natural Science Foundation of China (Grant No. 90919009) and the Ministry of Agriculture of China (Grant No. 2009ZX08006-011B).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Liu, L. Current progress and prospects of induced pluripotent stem cells. SCI CHINA SER C 52, 622–636 (2009). https://doi.org/10.1007/s11427-009-0092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0092-6

Keywords

Navigation