Skip to main content
Log in

Posttranslational modulation on the biological activities of molecular chaperones

  • Review
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Molecular chaperones are a family of proteins that were first noticed to exist about 45 years ago from their increased transcription under heat shock conditions. As a result, the regulation of their encoding genes has been subject to extensive studies. Recent studies revealed that the biological activities of molecular chaperones can also be effectively modulated at the protein level. The ways of modulation so far elucidated include allosteric effect, covalent modification, protein-protein interaction, and conformational alteration induced by such macro-environmental conditions as temperature and pH. These latter aspects were reviewed here. Emphasized here is the importance of such immediate structural alterations that lead to an immediate activity increase, providing the immediate protection needed for the cells to survive the stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 1962, 18: 571–573, 10.1007/BF02172188, 1:CAS:528:DyaF3sXivVOgtw%3D%3D

    Article  CAS  Google Scholar 

  2. Ritossa F. Discovery of the heat shock response. Cell Stress Chaperones, 1996, 1: 97–98, 9222594, 10.1379/1466-1268(1996)001<0097:DOTHSR>2.3.CO;2, 1:STN:280:DyaK2szmsFOltQ%3D%3D

    Article  CAS  Google Scholar 

  3. Tissieres A, Mitchell H K, Tracy U M. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J Mol Biol, 1974, 85: 389–398, 4209479, 10.1016/0022-2836(74)90447-1, 1:STN:280:DyaE2c3lvFGitw%3D%3D

    Article  Google Scholar 

  4. Lemeux P G, Herendeen S L, Bloch P L, et al. Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell, 1978, 13: 427–434, 10.1016/0092-8674(78)90317-3

    Article  Google Scholar 

  5. Barnett T, Altschuler M, McDaniel C N, et al. Heat shock induced proteins in plant cells. Dev Genet, 1980, 1: 331–340, 10.1002/dvg.1020010406, 1:CAS:528:DyaL3MXitFOk

    Article  CAS  Google Scholar 

  6. Kelley P M, Schlesinger M J. Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Mol Cell Biol, 1982, 2: 267–274, 7110134, 1:CAS:528:DyaL38XhsVSqsb0%3D

    Article  CAS  Google Scholar 

  7. Lindquist S, Craig E A. The heat-shock proteins. Annu Rev Genet, 1993, 22: 631–677, 10.1146/annurev.ge.22.120188.003215

    Article  Google Scholar 

  8. Lindguist S. The heat shock response. Annu Rev Biochem, 1986, 55: 1151–1191, 10.1146/annurev.bi.55.070186.005443

    Article  Google Scholar 

  9. Morimoto R I. Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259: 1409–1410, 8451637, 10.1126/science.8451637, 1:CAS:528:DyaK3sXhvVCnt7Y%3D

    Article  CAS  Google Scholar 

  10. Kültz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol, 2005, 67: 225–257, 15709958, 10.1146/annurev.physiol.67.040403.103635

    Article  Google Scholar 

  11. Hemmingsen S M, Woolford C, van der Vies S M, et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, 1988, 333: 330–334, 2897629, 10.1038/333330a0, 1:CAS:528:DyaL1cXmt1Cqtbo%3D

    Article  CAS  Google Scholar 

  12. Goloubinoff P, Gatenby A A, Lorimer G H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature, 1989, 337: 44–47, 2562907, 10.1038/337044a0, 1:CAS:528:DyaL1MXhtFWnur0%3D

    Article  CAS  Google Scholar 

  13. Deshaies R J, Koch B D, Werner-Washburne M, et al. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, 1988, 332: 800–805, 3282178, 10.1038/332800a0, 1:CAS:528:DyaL1cXktVelsrY%3D

    Article  CAS  Google Scholar 

  14. Chirico W J, Waters M G, Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature, 1988, 332: 805–810, 3282179, 10.1038/332805a0, 1:CAS:528:DyaL1cXktVamtb8%3D

    Article  CAS  Google Scholar 

  15. Bochkareva E S, Lissin N M, Girshovich A S. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature, 1988, 336: 254–257, 2904124, 10.1038/336254a0, 1:CAS:528:DyaL1MXjsFClsg%3D%3D

    Article  CAS  Google Scholar 

  16. Beckmann R P, Mizzen L A, Welch W J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science, 1990, 248: 850–854, 2188360, 10.1126/science.2188360, 1:CAS:528:DyaK3cXkt1Whu7k%3D

    Article  CAS  Google Scholar 

  17. Sherman M Y, Goldberg A L. Involvement of the chaperonin dnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J, 1992, 11: 71–77, 1740117, 1:CAS:528:DyaK38XhtVansLg%3D

    CAS  Google Scholar 

  18. Hayes S A, Dice J F. Roles of Molecular Chaperones in Protein Degradation. J Cell Biol, 1996, 132: 255–258, 8636205, 10.1083/jcb.132.3.255, 1:CAS:528:DyaK28XpsVaqsA%3D%3D

    Article  CAS  Google Scholar 

  19. Parsell D A, Kowal A S, Singer M A, et al. Protein disaggregation mediated by heat-shock protein Hsp104. Nature, 1994, 372: 475–478, 7984243, 10.1038/372475a0, 1:CAS:528:DyaK2MXisVGqtrc%3D

    Article  CAS  Google Scholar 

  20. Pelham H R B. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell, 1986, 46: 959–961, 2944601, 10.1016/0092-8674(86)90693-8, 1:CAS:528:DyaL28XmtVKlsbg%3D

    Article  CAS  Google Scholar 

  21. Ellis J. Proteins as molecular Chaperones. Nature, 1987, 328: 378–379, 3112578, 10.1038/328378a0, 1:STN:280:DyaL2s3oslWqtQ%3D%3D

    Article  CAS  Google Scholar 

  22. Ellis R J, van der Vies S M. Molecular chaperones. Annu Rev Biochem, 1991, 60: 321–347, 1679318, 10.1146/annurev.bi.60.070191.001541, 1:CAS:528:DyaK3MXmtVWitbk%3D

    Article  CAS  Google Scholar 

  23. Hendrick J P, Hartl F. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem, 1993, 62: 349–384, 8102520, 10.1146/annurev.bi.62.070193.002025, 1:CAS:528:DyaK3sXlsFCjurw%3D

    Article  CAS  Google Scholar 

  24. Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell, 2006, 125:443–451, 16678092, 10.1016/j.cell.2006.04.014, 1:CAS:528:DC%2BD28XkslCjtLw%3D

    Article  CAS  Google Scholar 

  25. Umbarger H E. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science, 1956, 123: 848, 13324101, 10.1126/science.123.3202.848, 1:CAS:528:DyaG28XmsFWruw%3D%3D

    Article  CAS  Google Scholar 

  26. Yates R A, Pardee A B. Control of pyrimidine biosynthesis in E. coli by a feedback mechanism. J Biol Chem, 1956, 221: 743–756, 13357468, 1:CAS:528:DyaG28XotlSgsQ%3D%3D

    CAS  Google Scholar 

  27. Swain J F, Gierasch L M. The changing landscape of protein allostery. Curr Opin Struct Biol, 2006, 16: 102–108, 16423525, 10.1016/j.sbi.2006.01.003, 1:CAS:528:DC%2BD28XhsFOjsrs%3D

    Article  CAS  Google Scholar 

  28. Bukau B, Horwich A L. The Hsp70 and Hsp60 chaperone machines. Cell, 1998, 92: 351–366, 9476895, 10.1016/S0092-8674(00)80928-9, 1:CAS:528:DyaK1cXhtFGisLk%3D

    Article  CAS  Google Scholar 

  29. Saibil H R. Chaperone machines in action. Curr Opin Struc Biol, 2008, 18: 35–42, 10.1016/j.sbi.2007.11.006, 1:CAS:528:DC%2BD1cXitVGitrc%3D

    Article  CAS  Google Scholar 

  30. Palleros D R, Reid K L, Shi L, et al. ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature, 1993, 365: 664–666, 8413631, 10.1038/365664a0, 1:CAS:528:DyaK3sXms1Ckt7g%3D

    Article  CAS  Google Scholar 

  31. Roseman A M, Chen S, White H, et al. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell, 1996, 87: 241–251, 8861908, 10.1016/S0092-8674(00)81342-2, 1:CAS:528:DyaK28XmsVGhsLs%3D

    Article  CAS  Google Scholar 

  32. Horovitz A, Willison K R. Allosteric regulation of chaperonins. Curr Opin Struct Biol, 2005, 15: 646–651, 16249079, 10.1016/j.sbi.2005.10.001, 1:CAS:528:DC%2BD2MXht1Gnsr%2FL

    Article  CAS  Google Scholar 

  33. Prodromou C, Roe S M, O’Brien R, et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997, 90: 65–75, 9230303, 10.1016/S0092-8674(00)80314-1, 1:CAS:528:DyaK2sXkslShtLc%3D

    Article  CAS  Google Scholar 

  34. Shiau A K, Harris S F, Southworth D R, et al. Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell, 2006, 127: 329–340, 17055434, 10.1016/j.cell.2006.09.027, 1:CAS:528:DC%2BD28XhtFOkt73J

    Article  CAS  Google Scholar 

  35. Bosl B, Grimminger B, Walter S. Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides. J Biol Chem, 2005, 280: 38170–38176, 16135516, 10.1074/jbc.M506149200

    Article  Google Scholar 

  36. Rappas M, Niwa H, Zhang X. Mechanisms of ATPases—a multi-disciplinary approach. Curr Protein Pept Sci, 2004, 5:89–105, 15078220, 10.2174/1389203043486874, 1:CAS:528:DC%2BD2cXisFWntLs%3D

    Article  CAS  Google Scholar 

  37. Caplan A J. What is a co-chaperone? Cell Stress Chaperones, 2003, 8: 105–107, 14627194, 10.1379/1466-1268(2003)008<0105:WIAC>2.0.CO;2

    Article  Google Scholar 

  38. Yochem J, Uchida H, Sunshine M, et al. Genetic analysis of two genes, dnaJ and dnaK, necessary for Escherichia coli and bacteriophage lambda DNA replication. Mol Gen Genet, 1978, 164: 9–14, 360041, 10.1007/BF00267593, 1:CAS:528:DyaE1cXlsVeiurw%3D

    Article  CAS  Google Scholar 

  39. Saito H, Uchida H. Initiation of DNA-replication of bacteriophage-lambda in Escherichia coli-K12. J Mol Biol, 1977, 113: 1–25, 328896, 10.1016/0022-2836(77)90038-9, 1:CAS:528:DyaE2sXks1GhsbY%3D

    Article  CAS  Google Scholar 

  40. Zylicz M, Ang D, Georgopolous C. The grpE protein of Escherichia coli. J Biol Chem, 1987, 262: 17437–17442, 2826421, 1:CAS:528:DyaL2sXmtFekur8%3D

    CAS  Google Scholar 

  41. Liberek K, Marszalek J, Ang D, et al. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A, 1991, 88: 2874–2878, 1826368, 10.1073/pnas.88.7.2874, 1:CAS:528:DyaK3MXhvVWitLo%3D

    Article  CAS  Google Scholar 

  42. Langer T, Lu C, Echols H, et al. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature, 1992, 356: 683–689, 1349157, 10.1038/356683a0, 1:CAS:528:DyaK38XisFSlsL8%3D

    Article  CAS  Google Scholar 

  43. Szabo A, Langer T, Schröder H, et al. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc Natl Acad Sci USA, 1994, 91: 10345–10349, 7937953, 10.1073/pnas.91.22.10345, 1:CAS:528:DyaK2MXhslemtbc%3D

    Article  CAS  Google Scholar 

  44. Höhfeld J, Minami Y, Hartl F U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell, 1995, 83: 589–598, 7585962, 10.1016/0092-8674(95)90099-3

    Article  Google Scholar 

  45. Goloubinoff P, Christeller J T, Gatenby A A, et al. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature, 1989, 342: 884–889, 10532860, 10.1038/342884a0, 1:CAS:528:DyaK3cXltFamtg%3D%3D

    Article  CAS  Google Scholar 

  46. Weissman J S, Hohl C M, Kovalenko O, et al. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell, 1995, 83: 577–587, 7585961, 10.1016/0092-8674(95)90098-5, 1:CAS:528:DyaK2MXpsV2hs74%3D

    Article  CAS  Google Scholar 

  47. Riggs D L, Cox M B, Cheung-Flynn J, et al. Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol, 2004, 39: 279–295, 15763706, 10.1080/10409230490892513, 1:CAS:528:DC%2BD2MXht1yltLo%3D

    Article  CAS  Google Scholar 

  48. Buchner J. Hsp90 & Co. — a holding for folding. Trends Biochem Sci, 1999, 24: 136–141, 10322418, 10.1016/S0968-0004(99)01373-0, 1:CAS:528:DyaK1MXltFCgs78%3D

    Article  CAS  Google Scholar 

  49. Sherman M Y, Goldberg A L. Heat shock of Escherichia coli increases binding of dnaK (the hsp70 homolog) to polypeptides by promoting its phosphorylation. Proc Natl Acad Sci USA, 1993, 90: 8648–8652, 8378342, 10.1073/pnas.90.18.8648, 1:CAS:528:DyaK2cXkt1Gg

    Article  CAS  Google Scholar 

  50. Sherman M Y, Goldberg A L. Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation, Nature, 1992b, 357: 167–169, 1349729, 10.1038/357167a0, 1:CAS:528:DyaK38XktVCjs7o%3D

    Article  CAS  Google Scholar 

  51. Sherman M, Goldberg A L. Heat shock-induced phosphorylation of GroEL alters its binding and dissociation from unfolded proteins. J Biol Chem, 1994, 269: 31479–31483, 7527389, 1:CAS:528:DyaK2cXmvFGntLk%3D

    CAS  Google Scholar 

  52. Kato K, Hasegawa K, Goto S, et al. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem, 1994, 269: 11274–11278, 8157658, 1:CAS:528:DyaK2cXktVemtrg%3D

    CAS  Google Scholar 

  53. MacRae T H. Structure and function of small heat shock/alphacrystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci, 2000, 57: 899–913, 10950306, 10.1007/PL00000733, 1:CAS:528:DC%2BD3cXlsl2gsrk%3D

    Article  CAS  Google Scholar 

  54. Martínez-Ruiz A, Villanueva L, González de Orduña C, et al. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci USA, 2005, 102: 8525–8530, 15937123, 10.1073/pnas.0407294102

    Article  Google Scholar 

  55. Jakob U, Muse W, Eser M, et al. Chaperone activity with a redox switch. Cell, 1999, 96: 341–352, 10025400, 10.1016/S0092-8674(00)80547-4, 1:CAS:528:DyaK1MXht1eqs74%3D

    Article  CAS  Google Scholar 

  56. Winter J, Jakob U. Beyond transcription-new mechanisms for the regulation of molecular chaperones. Crit Rev Biochem Mol Biol, 2004, 39: 297–317, 15763707, 10.1080/10409230490900658, 1:CAS:528:DC%2BD2MXht1yltLs%3D

    Article  CAS  Google Scholar 

  57. Haslbeck M, Walke S, Stromer T, et al. Hsp26: a temperature-regulated chaperone. EMBO J, 1999, 18: 6744–6751, 10581247, 10.1093/emboj/18.23.6744, 1:CAS:528:DC%2BD3cXhslyjsw%3D%3D

    Article  CAS  Google Scholar 

  58. Yang H, Huang S, Dai H, et al. The Mycobacterium tuberculosis small heat shock protein HSP16.3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity. Protein Science, 1999, 8: 174–179, 10210195, 1:CAS:528:DyaK1MXlsFequw%3D%3D

    Article  CAS  Google Scholar 

  59. Mao Q, Ke D, Feng X, et al. Preheat treatment for mycobacterium tuberculosis Hsp16.3: correlation between a structural phase change at 60°C and a dramatic increase in chaperone-like activity. Biochem Biophys Res Commun, 2001, 284: 942–947, 11409884, 10.1006/bbrc.2001.5074, 1:CAS:528:DC%2BD3MXktl2mt7o%3D

    Article  CAS  Google Scholar 

  60. Gu L, Abulimiti A, Li W, et al. Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisit for chaperone-like activity. J Mol Biol, 2002, 319: 517–526, 12051925, 10.1016/S0022-2836(02)00311-X, 1:CAS:528:DC%2BD38XktlGku7o%3D

    Article  CAS  Google Scholar 

  61. Fu X, Liu C, Liu Y, et al. Small Heat Shock Protein Hsp16.3 Modulates Its Chaperone Activity by Adjusting the Rate of Oligomeric Dissociation. Biochem Biophys Res Commun, 2003, 310: 412–420, 14521926, 10.1016/j.bbrc.2003.09.027, 1:CAS:528:DC%2BD3sXns1Kku7Y%3D

    Article  CAS  Google Scholar 

  62. Fu X, Chang Z. Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis. Biochem Biophys Res Commun, 2004, 316: 291–299, 15020216, 10.1016/j.bbrc.2004.02.053, 1:CAS:528:DC%2BD2cXitFKhtL4%3D

    Article  CAS  Google Scholar 

  63. Jiao W, Qian M, Li P, et al. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli. J Mol Biol, 2005, 347(4): 871–884, 15769476, 10.1016/j.jmb.2005.01.029, 1:CAS:528:DC%2BD2MXitlCgu7w%3D

    Article  CAS  Google Scholar 

  64. Fu X, Zhang H, Zhang X, et al. A dual role for the N-terminal region of Mycobacterium tuberculosis Hsp16.3 in self-oligomerization and binding denaturing substrate proteins. J Biol Chem, 2005, 280: 6337–6348, 15545279, 10.1074/jbc.M406319200, 1:CAS:528:DC%2BD2MXhsV2ru7c%3D

    Article  CAS  Google Scholar 

  65. Jiao W, Hong W, Li P, et al. The dramatically increased chaperone activity of small heat shock protein IbpB is retained for an extended period of time after the stress condition is removed. Biochem J, 2008, 410: 63–70, 17995456, 10.1042/BJ20071120, 1:CAS:528:DC%2BD1cXht1aju7c%3D

    Article  CAS  Google Scholar 

  66. Goloubinoff P, Diamant S, Weiss C, et al. GroES binding regulates GroEL chaperonin activity under heat shock. FEBS Lett, 1997, 407: 215–219, 9166902, 10.1016/S0014-5793(97)00348-7, 1:CAS:528:DyaK2sXislegtb4%3D

    Article  CAS  Google Scholar 

  67. Llorca O, Galán A, Carrascosa J L, et al. GroEL under heat-shock: Switching from a folding to a storing function. J Biol Chem, 1998, 273: 32587–32594, 9829996, 10.1074/jbc.273.49.32587, 1:CAS:528:DyaK1cXnvFOntL4%3D

    Article  CAS  Google Scholar 

  68. Grimshaw J P, Jelesarov I, Schönfeld H J, et al. Reversible thermal transition in GrpE, the nucleotide exchange factor of the DnaK heat-shock system. J Biol Chem, 2001, 276: 6098–6104, 11084044, 10.1074/jbc.M009290200, 1:CAS:528:DC%2BD3MXhslShsL0%3D

    Article  CAS  Google Scholar 

  69. Hong W, Jiao W, Hu J, et al. Periplasmic protein hdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. J Biol Chem, 2005, 280: 27029–27034, 15911614, 10.1074/jbc.M503934200, 1:CAS:528:DC%2BD2MXmt1Ggtrk%3D

    Article  CAS  Google Scholar 

  70. Wu Y, Hong W, Zhang L, et al. Conserved amphiphilic feature Is essential for periplasmic chaperone HdeA to support acid resistance in enteric bacteria. Biochem J, 2008, 412: 389–397, 18271752, 10.1042/BJ20071682, 1:CAS:528:DC%2BD1cXlvVWmt78%3D

    Article  CAS  Google Scholar 

  71. Jiang J, Zhang X, Chen Y, et al. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc Natl Acad Sci USA, 2008, 105: 11939–11944, 18697939, 10.1073/pnas.0805464105, 1:CAS:528:DC%2BD1cXhtVCnurnM

    Article  CAS  Google Scholar 

  72. Blatch G L. The Networking of Chaperones by Co-chaperones (Molecular Biology Intelligence Unit). New York: Springer, 2007.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZengYi Chang.

Additional information

Supported by National Natural Science Foundation of China(Grant Nos. 30570355 and 30670022) and National Key Basic Research Foundation of China (Grant Nos. 2006CB806508 and 2006CB910300).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Z. Posttranslational modulation on the biological activities of molecular chaperones. SCI CHINA SER C 52, 515–520 (2009). https://doi.org/10.1007/s11427-009-0084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0084-6

Keywords

Navigation