Skip to main content
Log in

The CXXC finger 5 protein is required for DNA damage-induced p53 activation

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest, senescence, apoptosis, and DNA repair. The ataxia telangiectasia mutated protein kinase (ATM) responds to DNA-damage stimuli and signals p53 stabilization and activation, thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity. In this study, we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway. CF5 induces p53 transcriptional activity and apoptosis in cells expressing wild type p53 but not in p53-deficient cells. Knockdown of CF5 inhibits DNA damage-induced p53 activation as well as cell cycle arrest. Furthermore, CF5 physically interacts with ATM and is required for DNA damage-induced ATM phosphorylation but not its recruitment to chromatin. These findings suggest that CF5 plays a crucial role in ATM-p53 signaling in response to DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vousden K H. p53: death star. Cell, 2000, 103(5): 691–694, 11114324, 10.1016/S0092-8674(00)00171-9, 1:CAS:528:DC%2BD3cXos1Snuro%3D

    Article  CAS  Google Scholar 

  2. Sharpless N E, DePinho R A. p53: good cop/bad cop. Cell, 2002, 110(1): 9–12, 12150992, 10.1016/S0092-8674(02)00818-8, 1:CAS:528:DC%2BD38XlsV2mtrY%3D

    Article  CAS  Google Scholar 

  3. Lombard D B, Chua K F, Mostoslavsky R, et al. DNA repair, genome stability, and aging. Cell, 2005, 120(4): 497–512, 15734682, 10.1016/j.cell.2005.01.028, 1:CAS:528:DC%2BD2MXitVWnurY%3D

    Article  CAS  Google Scholar 

  4. Aylon Y, Oren M. Living with p53, dying of p53. Cell, 2007, 130(4): 597–600, 17719538, 10.1016/j.cell.2007.08.005, 1:CAS:528:DC%2BD2sXhtVels77E

    Article  CAS  Google Scholar 

  5. Marine J C, Francoz S, Maetens M, et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ, 2006, 13(6): 927–934, 16543935, 10.1038/sj.cdd.4401912, 1:CAS:528:DC%2BD28Xks1Ortbo%3D

    Article  CAS  Google Scholar 

  6. Toledo F, Wahl G M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer, 2006, 6(12): 909–923, 17128209, 10.1038/nrc2012, 1:CAS:528:DC%2BD28Xht1Clsr3E

    Article  CAS  Google Scholar 

  7. Vousden K H, Lane D P. p53 in health and disease. Nat Rev Mol Cell Biol, 2007, 8(4):275–283, 17380161, 10.1038/nrm2147, 1:CAS:528:DC%2BD2sXjtlygsr0%3D

    Article  CAS  Google Scholar 

  8. Borkowska E, Binka-Kowalska A, Constantinou M, et al. P53 mutations in urinary bladder cancer patients from Central Poland. J Appl Genet, 2007, 48(2): 177–183, 17495352

    Article  Google Scholar 

  9. Caulin C, Nguyen T, Lang G A, et al. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest, 2007, 117(7): 1893–1901, 17607363, 10.1172/JCI31721, 1:CAS:528:DC%2BD2sXnvVansrY%3D

    Article  CAS  Google Scholar 

  10. Gottschalg E, Scott G B, Burns P A, et al. Potassium diazoacetate-induced p53 mutations in vitro in relation to formation of O6-carboxymethyl- and O6-methyl-2′-deoxyguanosine DNA adducts: relevance for gastrointestinal cancer. Carcinogenesis, 2007, 28(2): 356–362, 16926174, 10.1093/carcin/bgl150, 1:CAS:528:DC%2BD2sXhs1Srsro%3D

    Article  CAS  Google Scholar 

  11. Kouidou S, Malousi A, Kyventidis A, et al. G: C > A: T mutations and potential epigenetic regulation of p53 in breast cancer. Breast Cancer Res Treat, 2007, 106(3): 351–360, 17505880, 10.1007/s10549-007-9514-y, 1:CAS:528:DC%2BD2sXht1Cgt7fN

    Article  CAS  Google Scholar 

  12. Queille S, Luron L, Spatz A, et al. Analysis of skin cancer risk factors in immunosuppressed renal transplant patients shows high levels of UV-specific tandem CC to TT mutations of the p53 gene. Carcinogenesis, 2007, 28(3): 724–731, 17065198, 10.1093/carcin/bgl191, 1:CAS:528:DC%2BD2sXjslOns7k%3D

    Article  CAS  Google Scholar 

  13. Canman C E, Lim D S, Cimprich K A, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science, 1998, 281(5383): 1677–1679, 9733515, 10.1126/science.281.5383.1677, 1:CAS:528:DyaK1cXmtVWhtbc%3D

    Article  CAS  Google Scholar 

  14. Lee J H, Paull T T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science, 2004, 304(5667): 93–96, 15064416, 10.1126/science.1091496, 1:CAS:528:DC%2BD2cXis1ant74%3D

    Article  CAS  Google Scholar 

  15. Lee J H, Paull T T. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science, 2005, 308(5721): 551–554, 15790808, 10.1126/science.1108297, 1:CAS:528:DC%2BD2MXjtlOjt7k%3D

    Article  CAS  Google Scholar 

  16. Hartley K O, Gell D, Smith G C, et al. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell, 1995, 82(5): 849–856, 7671312, 10.1016/0092-8674(95)90482-4, 1:CAS:528:DyaK2MXotFagsrc%3D

    Article  CAS  Google Scholar 

  17. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 1995, 268(5218): 1749–1753, 7792600, 10.1126/science.7792600, 1:CAS:528:DyaK2MXmsFCitrs%3D

    Article  CAS  Google Scholar 

  18. Barlow C, Hirotsune S, Paylor R, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell, 1996, 86(1): 159–171, 8689683, 10.1016/S0092-8674(00)80086-0, 1:CAS:528:DyaK28XktlGnsbc%3D

    Article  CAS  Google Scholar 

  19. Harper J W, Elledge S J. The DNA damage response: ten years after. Mol Cell, 2007, 28(5): 739–745, 18082599, 10.1016/j.molcel.2007.11.015, 1:CAS:528:DC%2BD1cXktVWisQ%3D%3D

    Article  CAS  Google Scholar 

  20. Lavin M F, Kozlov S. ATM activation and DNA damage response. Cell Cycle, 2007, 6(8): 931–942, 17457059, 1:CAS:528:DC%2BD2sXos1Ggsr0%3D

    Article  CAS  Google Scholar 

  21. Rai R, Peng G, Li K, et al. DNA damage response: the players, the network and the role in tumor suppression. Cancer Genomics Proteomics, 2007, 4(2): 99–106, 17804872, 1:CAS:528:DC%2BD2sXkvVehu7s%3D

    CAS  Google Scholar 

  22. Siliciano J D, Canman C E, Taya Y, et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997, 11(24): 3471–3481, 9407038, 10.1101/gad.11.24.3471, 1:CAS:528:DyaK1cXivFOqsg%3D%3D

    Article  CAS  Google Scholar 

  23. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 1998, 281(5383): 1674–1677, 9733514, 10.1126/science.281.5383.1674, 1:CAS:528:DyaK1cXmtVKitLY%3D

    Article  CAS  Google Scholar 

  24. Khanna K K, Keating K E, Kozlov S, et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet, 1998, 20(4): 398–400, 9843217, 10.1038/3882, 1:CAS:528:DyaK1cXnslOls78%3D

    Article  CAS  Google Scholar 

  25. Shieh S Y, Ikeda M, Taya Y, et al. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell, 1997, 91(3): 325–334, 9363941, 10.1016/S0092-8674(00)80416-X, 1:CAS:528:DyaK2sXnt1CltLY%3D

    Article  CAS  Google Scholar 

  26. Corcoran C A, Huang Y, Sheikh M S. The p53 paddy wagon: COP1, Pirh2 and MDM2 are found resisting apoptosis and growth arrest. Cancer Biol Ther, 2004, 3(8): 721–725, 15280670, 1:CAS:528:DC%2BD2MXhslKrtL8%3D, 10.4161/cbt.3.8.1068

    Article  CAS  Google Scholar 

  27. Dornan D, Wertz I, Shimizu H, et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature, 2004, 429(6987): 86–92, 15103385, 10.1038/nature02514, 1:CAS:528:DC%2BD2cXjs1Kiurk%3D

    Article  CAS  Google Scholar 

  28. Marchler-Bauer A, Anderson J B, Derbyshire M K, et al. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res, 2007, 35 (Database issue): D237–240, 17135202, 10.1093/nar/gkl951, 1:CAS:528:DC%2BD2sXivFKntw%3D%3D

    Article  CAS  Google Scholar 

  29. Krude T, Jackman M, Pines J, et al. Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system. Cell, 1997, 88(1): 109–119, 9019396, 10.1016/S0092-8674(00)81863-2, 1:CAS:528:DyaK2sXltF2hsw%3D%3D

    Article  CAS  Google Scholar 

  30. Shu H B, Takeuchi M, Goeddel D V. The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci USA, 1996, 93(24): 13973–13978, 8943045, 10.1073/pnas.93.24.13973, 1:CAS:528:DyaK28Xnt1Gluro%3D

    Article  CAS  Google Scholar 

  31. Ward I M, Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem, 2001, 276(51): 47759–47762, 11673449, 1:CAS:528:DC%2BD38XkvFWj

    CAS  Google Scholar 

  32. Matsuda A, Suzuki Y, Honda G, et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene, 2003, 22(21): 3307–3318, 12761501, 10.1038/sj.onc.1206406, 1:CAS:528:DC%2BD3sXjvFaksLg%3D

    Article  CAS  Google Scholar 

  33. Xu L G, Wang Y Y, Han K J, et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell, 2005, 19(6): 727–740, 16153868, 10.1016/j.molcel.2005.08.014, 1:CAS:528:DC%2BD2MXhtVyhtb%2FJ

    Article  CAS  Google Scholar 

  34. Hsu I C, Tokiwa T, Bennett W, et al. p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines. Carcinogenesis, 1993, 14(5): 987–992, 8389256, 10.1093/carcin/14.5.987, 1:CAS:528:DyaK3sXkvFalsrk%3D

    Article  CAS  Google Scholar 

  35. Ragot T, Vincent N, Chafey P, et al. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature, 1993, 361(6413): 647–650, 8437625, 10.1038/361647a0, 1:CAS:528:DyaK3sXhs1WjsLc%3D

    Article  CAS  Google Scholar 

  36. Anderson S C, Johnson D E, Harris M P, et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin Cancer Res, 1998, 4(7): 1649–1659, 9676839, 1:CAS:528:DyaK1cXks1Kit7s%3D

    CAS  Google Scholar 

  37. Meplan C, Mann K, Hainaut P. Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem, 1999, 274(44): 31663–31670, 10531375, 10.1074/jbc.274.44.31663, 1:CAS:528:DyaK1MXntFOjs7o%3D

    Article  CAS  Google Scholar 

  38. Hendrikse A S, Hunter A J, Keraan M, et al. Effects of low dose irradiation on TK6 and U937 cells: induction of p53 and its role in cell-cycle delay and the adaptive response. Int J Radiat Biol, 2000, 76(1): 11–21, 10665953, 10.1080/095530000138961, 1:CAS:528:DC%2BD3cXjs1Omtrk%3D

    Article  CAS  Google Scholar 

  39. Grob T J, Novak U, Maisse C, et al. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ, 2001, 8(12): 1213–1223, 11753569, 10.1038/sj.cdd.4400962, 1:CAS:528:DC%2BD38XmtVKksg%3D%3D

    Article  CAS  Google Scholar 

  40. Walerych D, Kudla G, Gutkowska M, et al. Hsp90 chaperones wild-type p53 tumor suppressor protein. J Biol Chem, 2004, 279(47): 48836–48845, 15358769, 10.1074/jbc.M407601200, 1:CAS:528:DC%2BD2cXpslKjsr0%3D

    Article  CAS  Google Scholar 

  41. Enokimura N, Shiraki K, Kawakita T, et al. Vitamin K analog (compound 5) induces apoptosis in human hepatocellular carcinoma independent of the caspase pathway. Anticancer Drugs, 2005, 16(8): 837–844, 16096431, 10.1097/01.cad.0000175583.78574.d7, 1:CAS:528:DC%2BD2MXntlSktL0%3D

    Article  CAS  Google Scholar 

  42. Kastan M B, Zhan Q, el-Deiry W S, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 1992, 71(4): 587–597, 1423616, 10.1016/0092-8674(92)90593-2, 1:CAS:528:DyaK3sXjsFWksA%3D%3D

    Article  CAS  Google Scholar 

  43. Eppenberger U, Kueng W, Eppenberger-Castori S, et al. Molecular factors determine primary and secondary therapy of breast carcinoma. Ther Umsch, 1997, 54(8): 451–456, 9381415, 1:STN:280:DyaK2svjt1agtg%3D%3D

    CAS  Google Scholar 

  44. Prives C. Signaling to p53: breaking the MDM2-p53 circuit. Cell, 1998, 95(1): 5–8, 9778240, 10.1016/S0092-8674(00)81774-2, 1:CAS:528:DyaK1cXmslWmu7k%3D

    Article  CAS  Google Scholar 

  45. Seoane J, Le H V, Massague J. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature, 2002, 419(6908): 729–734, 12384701, 10.1038/nature01119, 1:CAS:528:DC%2BD38XnvVyrt7g%3D

    Article  CAS  Google Scholar 

  46. Chipuk J E, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, 2004, 303(5660): 1010–1014, 14963330, 10.1126/science.1092734, 1:CAS:528:DC%2BD2cXhtlWnu7o%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongBing Shu.

Additional information

Supported by National Basic Research Program of China (Grant No. 2006CB504301), National High Technology Research and Development Program of China (Grant No. 2006AA02A306), and National Natural Science Foundation of China (Grant Nos. 30630019 and 30570959).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Wang, R., Wang, Y. et al. The CXXC finger 5 protein is required for DNA damage-induced p53 activation. SCI CHINA SER C 52, 528–538 (2009). https://doi.org/10.1007/s11427-009-0083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0083-7

Keywords

Navigation