Skip to main content
Log in

Towards transgenic primates: What can we learn from mouse genetics?

  • Review
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Considering the great physiological and behavioral similarities with humans, monkeys represent the ideal models not only for the study of complex cognitive behavior but also for the preclinical research and development of novel therapeutics for treating human diseases. Various powerful genetic technologies initially developed for making mouse models are being explored for generating transgenic primate models. We review the latest genetic engineering technologies and discuss the potentials and limitations for systematic production of transgenic primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bavister B D, Boatman D E, Collins K, et al. Birth of rhesus monkey infant after in vitro fertilization and nonsurgical embryo transfer. Proc Natl Acad Sci USA, 1984, 81(7): 2218–2222, 6326113, 10.1073/pnas.81.7.2218, 1:STN:280:DyaL2c7ptl2rsA%3D%3D

    Article  CAS  Google Scholar 

  2. Gardner D K, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update, 1997, 3(4): 367–382, 9459282, 10.1093/humupd/3.4.367, 1:STN:280:DyaK1c7hvFeksg%3D%3D

    Article  CAS  Google Scholar 

  3. Schramm R D, Paprocki A M, Watkins D I. Birth of MHC-defined rhesus monkeys produced by assisted reproductive technology. Vaccine, 2001, 20(3–4): 603–607, 11672927, 10.1016/S0264-410X(01)00336-X, 1:STN:280:DC%2BD3MrmslKrsw%3D%3D

    Article  CAS  Google Scholar 

  4. Hara K, Yasuhara T, Matsukawa N, et al. Hippocampal CA1 cell loss in a non-human primate model of transient global ischemia: a pilot study. Brain Res Bull, 2007, 74(1–3): 164–171, 17683803, 10.1016/j.brainresbull.2007.06.014, 1:CAS:528:DC%2BD2sXosF2qtbc%3D

    Article  CAS  Google Scholar 

  5. Jolly A. Lemur social behavior and primate intelligence. Science, 1966, 153(735): 501–506, 5938775, 10.1126/science.153.3735.501, 1:STN:280:DyaF287ltFGgsw%3D%3D

    Article  CAS  Google Scholar 

  6. Gross C G, Rocha-Miranda C E, Bender D B. Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol, 1972, 35(1): 96–111, 4621506, 1:STN:280:DyaE38%2FptV2rsQ%3D%3D

    CAS  Google Scholar 

  7. Desimone R, Albright T D, Gross C G, et al. Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci, 1984, 4(8): 2051–2062, 6470767, 1:STN:280:DyaL2c3ptFGqsA%3D%3D

    CAS  Google Scholar 

  8. Kanemaru K, Iwatsubo T, Ihara Y. Comparable amyloid beta-protein (A beta) 42(43) and A beta 40 deposition in the aged monkey brain. Neurosci Lett, 1996, 214(2–3): 196–198, 8878117, 10.1016/0304-3940(96)12893-7, 1:CAS:528:DyaK28XlsFyhsLg%3D

    Article  CAS  Google Scholar 

  9. Jentsch J D, Redmond D E Jr., Elsworth J D, et al. Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science, 1997, 277(5328): 953–955, 9252326, 10.1126/science.277.5328.953, 1:CAS:528:DyaK2sXltlCqur4%3D

    Article  CAS  Google Scholar 

  10. Zola S M, Squire L R. Relationship between magnitude of damage to the hippocampus and impaired recognition memory in monkeys. Hippocampus, 2001, 11(2): 92–98, 11345130, 10.1002/hipo.1027, 1:STN:280:DC%2BD3M3ktFegtA%3D%3D

    Article  CAS  Google Scholar 

  11. Miller E K, Nieder A, Freedman D J, et al. Neural correlates of categories and concepts. Curr Opin Neurobiol, 2003, 13(2): 198–203, 12744974, 10.1016/S0959-4388(03)00037-0, 1:CAS:528:DC%2BD3sXjs1Gisbw%3D

    Article  CAS  Google Scholar 

  12. Kimura N, Nakamura S, Ono F, et al. Presenilin-2 in the cynomolgus monkey brain: investigation of age-related changes. Primates, 2004, 45(3): 167–175, 14986149, 10.1007/s10329-004-0076-x

    Article  Google Scholar 

  13. Suzuki W A, Amaral D G. Functional neuroanatomy of the medial temporal lobe memory system. Cortex, 2004, 40(1): 220–222, 15070014, 10.1016/S0010-9452(08)70958-4

    Article  Google Scholar 

  14. Gross C G. Processing the facial image: a brief history. Am Psychol, 2005, 60(8): 755–763, 16351399, 10.1037/0003-066X.60.8.755

    Article  Google Scholar 

  15. Penn D C, Povinelli D J. Causal cognition in human and nonhuman animals: a comparative, critical review. Annu Rev Psychol, 2007, 58: 97–118, 17029564, 10.1146/annurev.psych.58.110405.085555

    Article  Google Scholar 

  16. Buccafusco J J. Estimation of working memory in macaques for studying drugs for the treatment of cognitive disorders. J Alzheimers Dis, 2008, 15(4): 709–720, 19096166, 1:CAS:528:DC%2BD1cXhsFSmt7vF

    CAS  Google Scholar 

  17. Capecchi M R. Altering the genome by homologous recombination. Science, 1989, 244(4910): 1288–1292, 2660260, 10.1126/science.2660260, 1:CAS:528:DyaL1MXksFWhtLg%3D

    Article  CAS  Google Scholar 

  18. Capecchi M R. The new mouse genetics: altering the genome by gene targeting. Trends Genet, 1989, 5(3): 70–76, 2660363, 10.1016/0168-9525(89)90029-2, 1:CAS:528:DyaK3cXltFSjsbs%3D

    Article  CAS  Google Scholar 

  19. Grant S G, O’Dell T J, Karl K A, et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science, 1992, 258(5090): 1903–1910, 1361685, 10.1126/science.1361685, 1:CAS:528:DyaK3sXnvVGksA%3D%3D

    Article  CAS  Google Scholar 

  20. Silva A J, Stevens C F, Tonegawa S, et al. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science, 1992, 257(5067): 201–206, 1378648, 10.1126/science.1378648, 1:CAS:528:DyaK38XkvVOqtrs%3D

    Article  CAS  Google Scholar 

  21. Silva A J, Paylor R, Wehner J M, et al. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science, 1992, 257(5067): 206–211, 1321493, 10.1126/science.1321493, 1:CAS:528:DyaK38XkvVOqtrg%3D

    Article  CAS  Google Scholar 

  22. Tsien J Z, Huerta P T, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell, 1996, 87(7): 1327–1338, 8980238, 10.1016/S0092-8674(00)81827-9, 1:CAS:528:DyaK2sXitlSjuw%3D%3D

    Article  CAS  Google Scholar 

  23. Tang Y P, Shimizu E, Dube G R, et al. Genetic enhancement of learning and memory in mice. Nature, 1999, 401(6748): 63–69, 10485705, 10.1038/43432, 1:CAS:528:DyaK1MXlvVGms70%3D

    Article  CAS  Google Scholar 

  24. Shimizu E, Tang Y P, Rampon C, et al. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science, 2000, 290(5494): 1170–1174, 11073458, 10.1126/science.290.5494.1170, 1:CAS:528:DC%2BD3cXotVChtLk%3D

    Article  CAS  Google Scholar 

  25. Wang H, Shimizu E, Tang Y P, et al. Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc Natl Acad Sci USA, 2003, 100(7): 4287–4292, 12646704, 10.1073/pnas.0636870100, 1:CAS:528:DC%2BD3sXivFWjsLY%3D

    Article  CAS  Google Scholar 

  26. Cui Z, Wang H, Tan Y, et al. Inducible and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain. Neuron, 2004, 41(5): 781–793, 15003177, 10.1016/S0896-6273(04)00072-8, 1:CAS:528:DC%2BD2cXisVKitbk%3D

    Article  CAS  Google Scholar 

  27. Wang H, Hu Y, Tsien J Z. Molecular and systems mechanisms of memory consolidation and storage. Prog Neurobiol, 2006, 79(3): 123–135, 16891050, 10.1016/j.pneurobio.2006.06.004, 1:CAS:528:DC%2BD28XoslOhsLs%3D

    Article  CAS  Google Scholar 

  28. Cao X, Wang H, Mei B, et al. Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation. Neuron, 2008, 60(2): 353–366, 18957226, 10.1016/j.neuron.2008.08.027, 1:CAS:528:DC%2BD1cXhtlCgtrnM

    Article  CAS  Google Scholar 

  29. Joyner A L, Guillemot F. Gene targeting and development of the nervous system. Curr Opin Neurobiol, 1994, 4(1): 37–42, 8173323, 10.1016/0959-4388(94)90029-9, 1:CAS:528:DyaK2cXlslWnt7Y%3D

    Article  CAS  Google Scholar 

  30. Forrest D, Yuzaki M, Soares H D, et al. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron, 1994, 13(2): 325–338, 8060614, 10.1016/0896-6273(94)90350-6, 1:CAS:528:DyaK2cXmt1alsbg%3D

    Article  CAS  Google Scholar 

  31. Li Y, Erzurumlu R S, Chen C, et al. Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell, 1994, 76(3): 427–437, 8313466, 10.1016/0092-8674(94)90108-2, 1:CAS:528:DyaK2cXhsFClt74%3D

    Article  CAS  Google Scholar 

  32. Tsien J Z, Chen D F, Gerber D, et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell, 1996, 87(7): 1317–1326, 8980237, 10.1016/S0092-8674(00)81826-7, 1:CAS:528:DyaK2sXit12qtA%3D%3D

    Article  CAS  Google Scholar 

  33. McHugh T J, Blum K I, Tsien J Z, et al. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell, 1996, 87(7): 1339–1349, 8980239, 10.1016/S0092-8674(00)81828-0, 1:CAS:528:DyaK2sXitlShtw%3D%3D

    Article  CAS  Google Scholar 

  34. Rampon C, Tang Y P, Goodhouse J, et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci, 2000, 3(3): 238–244, 10700255, 10.1038/72945, 1:CAS:528:DC%2BD3cXhs1Smu78%3D

    Article  CAS  Google Scholar 

  35. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA, 1992, 89(12): 5547–5551, 1319065, 10.1073/pnas.89.12.5547, 1:CAS:528:DyaK38Xks1equr4%3D

    Article  CAS  Google Scholar 

  36. Wittenberg, G M, Tsien J Z. An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci, 2002, 25(10): 501–5, 12220877, 10.1016/S0166-2236(02)02231-2, 1:CAS:528:DC%2BD38XmvVWmu78%3D

    Article  CAS  Google Scholar 

  37. Cui Z, Lindl K A, Mei B, et al. Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout. Eur J Neurosci, 2005, 22(3): 755–763, 16101757, 10.1111/j.1460-9568.2005.04257.x

    Article  Google Scholar 

  38. McDonald R J, Hong N S, Craig L A, et al. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus. Eur J Neurosci, 2005, 22(5): 1201–1213, 16176363, 10.1111/j.1460-9568.2005.04272.x

    Article  Google Scholar 

  39. Winters B D, Bussey T J. Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci, 2005, 25(17): 4243–4251, 15858050, 10.1523/JNEUROSCI.0480-05.2005, 1:CAS:528:DC%2BD2MXktFKgtrY%3D

    Article  CAS  Google Scholar 

  40. Takehara-Nishiuchi K, Nakao K, Kawahara S, et al. Systems consolidation requires postlearning activation of NMDA receptors in the medial prefrontal cortex in trace eyeblink conditioning. J Neurosci, 2006, 26(19): 5049–5058, 16687496, 10.1523/JNEUROSCI.4381-05.2006, 1:CAS:528:DC%2BD28Xlt1Cjurs%3D

    Article  CAS  Google Scholar 

  41. Wu C L, Xia S, Fu T F, et al. Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci, 2007, 10(12): 1578–1586, 17982450, 10.1038/nn2005, 1:CAS:528:DC%2BD2sXhtlKltLfI

    Article  CAS  Google Scholar 

  42. Mack V, Burnashev N, Kaiser K M, et al. Conditional restoration of hippocampal synaptic potentiation in Glur-A-deficient mice. Science, 2001, 292(5526): 2501–2504, 11431570, 10.1126/science.1059365, 1:CAS:528:DC%2BD3MXkvFWlsLw%3D

    Article  CAS  Google Scholar 

  43. Husi H, Ward M A, Choudhary J S, et al. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci, 2000, 3(7): 661–669, 10862698, 10.1038/76615, 1:CAS:528:DC%2BD3cXkvFaqtrw%3D

    Article  CAS  Google Scholar 

  44. Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 1992, 256(5060): 1217–1221, 1350383, 10.1126/science.256.5060.1217, 1:CAS:528:DyaK3sXisVOrs7o%3D

    Article  CAS  Google Scholar 

  45. Monyer H, Burnashev N, Laurie D J, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 1994, 12(3): 529–540, 7512349, 10.1016/0896-6273(94)90210-0, 1:CAS:528:DyaK2cXitlKku7w%3D

    Article  CAS  Google Scholar 

  46. Carmignoto G, Vicini S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science, 1992, 258(5084): 1007–1011, 1279803, 10.1126/science.1279803, 1:CAS:528:DyaK38XmsVGqtbg%3D

    Article  CAS  Google Scholar 

  47. Hestrin S. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature, 1992, 357(6380): 686–689, 1377360, 10.1038/357686a0, 1:CAS:528:DyaK38Xks1elsrY%3D

    Article  CAS  Google Scholar 

  48. Tang Y P, Wang H, Feng R, et al. Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology, 2001, 41(6): 779–790, 11640933, 10.1016/S0028-3908(01)00122-8, 1:CAS:528:DC%2BD3MXnsF2jsr4%3D

    Article  CAS  Google Scholar 

  49. Cao X, Cui Z, Feng R, et al. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur J Neurosci, 2007, 25(6): 1815–1822, 17432968, 10.1111/j.1460-9568.2007.05431.x

    Article  Google Scholar 

  50. Wong R W, Setou M, Teng J, et al. Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice. Proc Natl Acad Sci USA, 2002, 99(22): 14500–14505, 12391294, 10.1073/pnas.222371099, 1:CAS:528:DC%2BD38XosF2hs7c%3D

    Article  CAS  Google Scholar 

  51. White T L, Youngentob S L. The effect of NMDA-NR2B receptor subunit over-expression on olfactory memory task performance in the mouse. Brain Res, 2004, 1021(1): 1–7, 15328026, 10.1016/j.brainres.2004.05.114, 1:CAS:528:DC%2BD2cXmvFWktbg%3D

    Article  CAS  Google Scholar 

  52. Coultrap S J, Bickford P C, Browning M D. Blueberry-enriched diet ameliorates age-related declines in NMDA receptor-dependent LTP. Age (Dordr), 2008, 30(4): 263–272, 10.1007/s11357-008-9067-y

    Article  Google Scholar 

  53. Ng D, Pitcher G M, Szilard R K, et al. Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. PLoS Biol, 2009, 7(2): e41, 19243221, 10.1371/journal.pbio.1000041

    Article  Google Scholar 

  54. Mayford M, Bach M E, Huang Y Y, et al. Control of memory formation through regulated expression of a CaMKII transgene. Science, 1996, 274(5293): 1678–1683, 8939850, 10.1126/science.274.5293.1678, 1:CAS:528:DyaK28XntlyktLY%3D

    Article  CAS  Google Scholar 

  55. Mayford M, Mansuy I M, Muller R U, et al. Memory and behavior: a second generation of genetically modified mice. Curr Biol, 1997, 7(9): R580–589, 9285710, 10.1016/S0960-9822(06)00287-9, 1:CAS:528:DyaK2sXmsVSisrY%3D

    Article  CAS  Google Scholar 

  56. Kida S, Josselyn S A, de Ortiz S P, et al. CREB required for the stability of new and reactivated fear memories. Nat Neurosci, 2002, 5(4): 348–355, 11889468, 10.1038/nn819, 1:CAS:528:DC%2BD38Xis1KisL4%3D

    Article  CAS  Google Scholar 

  57. Yasuda M, Mayford M R. CaMKII activation in the entorhinal cortex disrupts previously encoded spatial memory. Neuron, 2006, 50(2): 309–318, 16630840, 10.1016/j.neuron.2006.03.035, 1:CAS:528:DC%2BD28XksVWlsro%3D

    Article  CAS  Google Scholar 

  58. Cho M H, Cao X, Wang D, et al. Dentate gyrus-specific manipulation of beta-Ca2+/calmodulin-dependent kinase II disrupts memory consolidation. Proc Natl Acad Sci USA, 2007, 104(41): 16317–16322, 17913888, 10.1073/pnas.0703344104, 1:CAS:528:DC%2BD2sXhtF2gsr%2FF

    Article  CAS  Google Scholar 

  59. Wang H, Feng R, Phillip Wang L, et al. CaMKII activation state underlies synaptic labile phase of LTP and short-term memory formation. Curr Biol, 2008, 18(20): 1546–1554, 18929487, 10.1016/j.cub.2008.08.064, 1:CAS:528:DC%2BD1cXhtlSgsbbP

    Article  CAS  Google Scholar 

  60. Chen X, Ye H, Kuruvilla R, et al. A chemical-genetic approach to studying neurotrophin signaling. Neuron, 2005, 46(1): 13–21, 15820690, 10.1016/j.neuron.2005.03.009

    Article  Google Scholar 

  61. Johnson A W, Chen X, Crombag H S, et al. The brain-derived neurotrophic factor receptor TrkB is critical for the acquisition but not expression of conditioned incentive value. Eur J Neurosci, 2008, 28(5): 997–1002, 18671735, 10.1111/j.1460-9568.2008.06383.x

    Article  Google Scholar 

  62. Morgan D J, Weisenhaus M, Shum S, et al. Tissue-specific PKA in hibition using a chemical genetic approach and its application to studies on sperm capacitation. Proc Natl Acad Sci USA, 2008, 105(52): 20740–20745, 19074277, 10.1073/pnas.0810971105, 1:CAS:528:DC%2BD1MXks1Gluw%3D%3D

    Article  CAS  Google Scholar 

  63. di Pellegrino G, Fadiga L, Fogassi L, et al. Understanding motor events: a neurophysiological study. Exp Brain Res, 1992, 91(1): 176–180, 1301372, 10.1007/BF00230027

    Article  Google Scholar 

  64. Rizzolatti G, Fadiga L, Gallese V, et al. Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res, 1996, 3(2): 131–141, 8713554, 10.1016/0926-6410(95)00038-0, 1:STN:280:DyaK283ot1WrtA%3D%3D

    Article  CAS  Google Scholar 

  65. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci, 2004, 27: 169–192, 15217330, 10.1146/annurev.neuro.27.070203.144230, 1:CAS:528:DC%2BD2cXmslant70%3D

    Article  CAS  Google Scholar 

  66. Dinstein I, Thomas C, Behrmann M, et al. A mirror up to nature. Curr Biol, 2008, 18(1): R13–18, 18177704, 10.1016/j.cub.2007.11.004, 1:CAS:528:DC%2BD1cXivFagtQ%3D%3D

    Article  CAS  Google Scholar 

  67. Oberman L M, Hubbard E M, McCleery J P, et al. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res, 2005, 24(2): 190–198, 15993757, 10.1016/j.cogbrainres.2005.01.014

    Article  Google Scholar 

  68. Chan A W, Chong K Y, Martinovich C, et al. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science, 2001, 291(5502): 309–312, 11209082, 10.1126/science.291.5502.309, 1:CAS:528:DC%2BD3MXktlKmtA%3D%3D

    Article  CAS  Google Scholar 

  69. Yang S H, Cheng P H, Banta H, et al. Towards a transgenic model of Huntington’s disease in a non-human primate. Nature, 2008, 453(7197): 921–924, 18488016, 10.1038/nature06975, 1:CAS:528:DC%2BD1cXntVCqurw%3D

    Article  CAS  Google Scholar 

  70. Han X, Qian X, Bernstein J G, et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron, 2009, 62(2): 191–198, 19409264, 10.1016/j.neuron.2009.03.011, 1:CAS:528:DC%2BD1MXlvFSrtrw%3D

    Article  CAS  Google Scholar 

  71. Sasaki E, Suemizu H, Shimada A, et al. Generation of transgenic non-human primates with germline transmission. Nature, 2009, 459(7246): 523–528, 19478777, 10.1038/nature08090, 1:CAS:528:DC%2BD1MXmsFWqt7g%3D

    Article  CAS  Google Scholar 

  72. Schatten G, Mitalipov S. Developmental biology: Transgenic primate offspring. Nature, 2009, 459(7246): 515–516, 19478771, 10.1038/459515a, 1:CAS:528:DC%2BD1MXmsFWqs70%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Z. Tsien.

Additional information

Supported by Funding from GRA, NIMH and NIA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, H., Wang, P.L. & Tsien, J.Z. Towards transgenic primates: What can we learn from mouse genetics?. SCI CHINA SER C 52, 506–514 (2009). https://doi.org/10.1007/s11427-009-0082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0082-8

Keywords

Navigation