Skip to main content
Log in

Crystal structure of the MH2 domain of Drosophila Mad

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The decapentaplegic(Dpp), a member of the TGF-β superfamily, plays a pivotal role in the control of proliferation, global patterning and induction of specific cell fates during Drosophila development. Mother against Dpp(Mad) is the founding member of the conserved Smad protein family which specifically transduces the intracellular TGF-β signaling cascade. Here we report the 2.80 Å structure of the MH2 domain of Mad(Mad-MH2) that was readily superposed to the mammal Smad-MH2 structures. This unphosphorylated Mad-MH2 forms a symmetric homotrimer in crystals, consistent with the result of the size-exclusion chromatography that Mad-MH2 exhibited a propensity for concentration-dependent oligomerization prior to phosphorylation. Structural analysis revealed that the formation of homotrimeric Mad-MH2 is mainly mediated by contacts involving the extreme C-terminal SSVS motif, and is strengthened by phosphorylation of the last two Ser residues which was confirmed by the gel filtration analysis of the pseudophosphorylated Mad-MH2(DVD). Intriguingly, the homotrimer within an asymmetric unit only possesses two ordered C-terminal tails, reminiscent of the arrangement of the R-Smad/Smad4 complexes, indicating that the subunit with a flexible SSXS motif would be readily replaced by Co-Smad to form a functional heterotrimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massagué J. TGF-beta signal transduction. Annu Rev Biochem, 1998, 67: 753–791, 9759503, 10.1146/annurev.biochem.67.1.753

    Article  Google Scholar 

  2. Attisano L, Wrana J L. Signal transduction by the TGF-beta superfamily. Science, 2002, 296: 1646–1647, 12040180, 10.1126/science.1071809, 1:CAS:528:DC%2BD38XktlCht7k%3D

    Article  CAS  Google Scholar 

  3. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113: 685–700, 12809600, 10.1016/S0092-8674(03)00432-X, 1:CAS:528:DC%2BD3sXkvVekt7o%3D

    Article  CAS  Google Scholar 

  4. Raftery L A, Sutherland D J. TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev Biol, 1999, 210: 251–268, 10357889, 10.1006/dbio.1999.9282, 1:CAS:528:DyaK1MXjsFWnsLs%3D

    Article  CAS  Google Scholar 

  5. Raftery L A, Twombly V, Wharton K, et al. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics, 1995, 139: 241–254, 7705627, 1:CAS:528:DyaK28Xht1Wqu7Y%3D

    CAS  Google Scholar 

  6. Sekelsky J J, Newfeld S J, Raftery L A, et al. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics, 1995, 139: 1347–1358, 7768443, 1:CAS:528:DyaK28XhsFSrurw%3D

    CAS  Google Scholar 

  7. Derynck R, Zhang Y, Feng X H. Smads: transcriptional activators of TGF-beta responses. Cell, 1998, 95: 737–740, 9865691, 10.1016/S0092-8674(00)81696-7, 1:CAS:528:DyaK1MXivVGm

    Article  CAS  Google Scholar 

  8. Attisano L, Wrana J L. Smads as transcriptional co-modulators. Curr Opin Cell Biol, 2000, 12: 235–243, 10712925, 10.1016/S0955-0674(99)00081-2, 1:CAS:528:DC%2BD3cXitVantbo%3D

    Article  CAS  Google Scholar 

  9. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev, 2005, 19: 2783–810, 16322555, 10.1101/gad.1350705

    Article  Google Scholar 

  10. Shi Y. Structural insights on Smad function in TGFbeta signaling. Bioessays, 2001, 23: 223–232, 11223879, 10.1002/1521-1878(200103)23:3<223::AID-BIES1032>3.0.CO;2-U, 1:CAS:528:DC%2BD3MXptVOjs74%3D

    Article  CAS  Google Scholar 

  11. Abdollah S, Macías-Silva M, Tsukazaki T, et al. TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem, 1997, 272: 27678–27685, 9346908, 10.1074/jbc.272.44.27678, 1:CAS:528:DyaK2sXnt12ls78%3D

    Article  CAS  Google Scholar 

  12. Souchelnytskyi S, Tamaki K, Engström U, et al. Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem, 1997, 272: 28107–28115, 9346966, 10.1074/jbc.272.44.28107, 1:CAS:528:DyaK2sXnt12ltb4%3D

    Article  CAS  Google Scholar 

  13. Wu G, Chen Y G, Ozdamar B, et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science, 2000, 287: 92–97, 10615055, 10.1126/science.287.5450.92, 1:CAS:528:DC%2BD3cXis1akuw%3D%3D

    Article  CAS  Google Scholar 

  14. Qin B Y, Lam S S, Correia J J, et al. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes Dev, 2002, 16: 1950–1963, 12154125, 10.1101/gad.1002002, 1:CAS:528:DC%2BD38XmtFalu7c%3D

    Article  CAS  Google Scholar 

  15. Chacko B M, Qin B, Correia J J, et al. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization. Nat Struct Biol, 2001, 8: 248–253, 11224571, 10.1038/84995, 1:CAS:528:DC%2BD3MXhs1Khs7w%3D

    Article  CAS  Google Scholar 

  16. Wu J W, Hu M, Chai J, et al. Crystal structure of a phosphorylated Smad2: Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell, 2001, 8: 1277–1289, 11779503, 10.1016/S1097-2765(01)00421-X, 1:CAS:528:DC%2BD38XivFGmsg%3D%3D

    Article  CAS  Google Scholar 

  17. Qin B Y, Chacko B M, Lam S S, et al. Structural basis of Smad1 activation by receptor kinase phosphorylation. Mol Cell, 2001, 8: 1303–1312, 11779505, 10.1016/S1097-2765(01)00417-8, 1:CAS:528:DC%2BD38XivFGmsA%3D%3D

    Article  CAS  Google Scholar 

  18. Chacko B M, Qin B Y, Tiwari A, et al. Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell, 2004, 15: 813–823, 15350224, 10.1016/j.molcel.2004.07.016, 1:CAS:528:DC%2BD2cXnvFyhs7g%3D

    Article  CAS  Google Scholar 

  19. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997, 276: 307–326, 10.1016/S0076-6879(97)76066-X, 1:CAS:528:DyaK2sXivFehsbw%3D

    Article  CAS  Google Scholar 

  20. McCoy A J, Grosse-Kunstleve R W, Adams P D, et al. Phaser crystallographic software. J Appl Cryst, 2007, 40: 658–674, 10.1107/S0021889807021206, 1:CAS:528:DC%2BD2sXnslWqsLk%3D

    Article  CAS  Google Scholar 

  21. Hao R, Chen L, Wu J W, et al. Structure of Drosophila Mad MH2 domain. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2008, 64: 986–990, 18997322, 10.1107/S1744309108033034

    Article  CAS  Google Scholar 

  22. Adams P D, Grosse-Kunstleve R W, Hung L W, et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr, 2002, 58: 1948–1954, 12393927, 10.1107/S0907444902016657

    Article  Google Scholar 

  23. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004, 60: 2126–2132, 15572765, 10.1107/S0907444904019158

    Article  Google Scholar 

  24. Morris A L, MacArthur M W, Hutchinson E G, et al. Stereochemical quality of protein structure coordinates. Proteins, 1992, 12: 345–364, 1579569, 10.1002/prot.340120407, 1:CAS:528:DyaK38XisFWls7o%3D

    Article  CAS  Google Scholar 

  25. Izzi L, Attisano L. Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene, 2004, 23: 2071–2078, 15021894, 10.1038/sj.onc.1207412, 1:CAS:528:DC%2BD2cXitVOis7w%3D

    Article  CAS  Google Scholar 

  26. Shi Y, Hata A, Lo R S, et al. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature, 1997, 388: 87–93, 9214508, 10.1038/40431, 1:CAS:528:DyaK2sXksVSrt78%3D

    Article  CAS  Google Scholar 

  27. Qin B, Lam S S, Lin K. Crystal structure of a transcriptionally active Smad4 fragment. Structure, 1999, 7: 1493–1503, 10647180, 10.1016/S0969-2126(00)88340-9, 1:CAS:528:DC%2BD3cXkt1ynuw%3D%3D

    Article  CAS  Google Scholar 

  28. Wu J W, Krawitz A R, Chai J, et al. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell, 2002, 111: 357–367, 12419246, 10.1016/S0092-8674(02)01006-1, 1:CAS:528:DC%2BD38XovVaku78%3D

    Article  CAS  Google Scholar 

  29. Wu J W, Fairman R, Penry J, et al. Formation of a stable heterodimer between Smad2 and Smad4. J Biol Chem, 2001, 276: 20688–20694, 11274206, 10.1074/jbc.M100174200, 1:CAS:528:DC%2BD3MXktlKnu7s%3D

    Article  CAS  Google Scholar 

  30. Kretzschmar M, Liu F, Hata A, et al. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev, 1997, 11: 984–995, 9136927, 10.1101/gad.11.8.984, 1:CAS:528:DyaK2sXivFWgsb8%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaWei Wu.

Additional information

Supported by National Key Basic Research and Development Program of China (Grant Nos. 2006CB503900 and 2007CB914400) and China National Funds for Distinguished Young Scientists (Grant No. 30425005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Chen, L., Wang, L. et al. Crystal structure of the MH2 domain of Drosophila Mad. SCI CHINA SER C 52, 539–544 (2009). https://doi.org/10.1007/s11427-009-0080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0080-x

Keywords

Navigation