Skip to main content
Log in

Electrophysiological evidence of personal experiences in the great Sichuan earthquake impacting on selective attention

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Event-related brain potentials (ERPs) were measured when 24 Chinese subjects performed the earthquake color-matching Stroop task. All of them have experienced the great Sichuan earthquake (5.12), with 12 subjects in each of Chengdu city and Chongqing city (different earthquake experiences) groups. The behavioral data showed that the earthquake Stroop task yielded robust the earthquake interference effect as indexed by longer RT for earthquake-related (Related) words than earthquake-unrelated (Unrelated) words only in the Chengdu group. Scalp ERP analysis also revealed the neurophysiological substrate of the interference effect: a greater positivity (P350–450) in Related words as compared to Unrelated words was found between 350 and 450 ms post-stimulus over fronto-central scalp regions in the Chengdu group, while the interference effect was not found in the Chongqing group. The P350–450 might reflect an earthquake experience interference, but also attention enhancing, effect of earthquake-related words. Dipole source analysis of the difference wave (Related-Unrelated) showed that a generator was localized in the parahippocampal gyrus, which was possibly associated with flashbulb memory (personal earthquake experience). The results indicated that different personal earthquake experiences might be critical in engaging the neural mechanisms that underlie the modulation of selective attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahneman D. Attention and Effort. Englewood Cliffs: Prentice-Hall, 1973

    Google Scholar 

  2. Wickens C D. Processing resources and attention. In: Damos D L. (ed.) Multiple Task Performance. Basingstoke: Taylor and Francis 1991. 3–34

    Google Scholar 

  3. Corbetta M. Frontoparietal cortical networks for directing attention and the eye to visual location: Identical, independent, or overlapping neural systems? Proc Natl Acad Sci USA, 1998, 95: 831–838, 9448248, 10.1073/pnas.95.3.831, 1:CAS:528:DyaK1cXosFSgsg%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Kok A. Age-related changes in involuntary and voluntary attention as reflected in components of the event-related potential (ERP). Biol Psychol, 2000, 54: 107–143, 11035221, 10.1016/S0301-0511(00)00054-5, 1:STN:280:DC%2BD3M%2FotFahtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. Mao W, Wang Y P. The active inhibition for the processing of visual irrelevant conflict information. Inter J Psychophysi, 2008, 67: 47–53, 10.1016/j.ijpsycho.2007.10.003

    Article  Google Scholar 

  6. Stroop J R. Studies of interference in serial verbal reactions. J Exp Psycho, 1935, 18: 643–662, 10.1037/h0054651

    Article  Google Scholar 

  7. Posner M I, Snyder C R R. Attention and cognitive control, In: Solso RL, Ed. Information Processing and Cognition: The Loyola Symposium. Hillsdale: Erlbaum, 1975. 55–85

    Google Scholar 

  8. Henik A. Paying attention to the Stroop effect? J Int Neuropsychol Soc, 1996, 2: 467–470, 9375172, 10.1017/S1355617700001557, 1:STN:280:DyaK1c%2Fkt1Onsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  9. Rafal R, Henik A. The neurology of inhibition: Integrating controlled and automatic processes. In: Dagenbach D, Carr T H eds. Inhibitory Processes in Attention, Memory, and Language. San Diego: Academic Press, 1994. 1–52

    Google Scholar 

  10. Rebai M, Bernard C, Lannou J. The Stroop’s test evokes a negative brain potential, the N400. Int J Neurosci, 1997, 91: 85–94, 9394217, 1:STN:280:DyaK1c%2Fls1SmtA%3D%3D, 10.3109/00207459708986367

    Article  PubMed  CAS  Google Scholar 

  11. West R, Alain C. Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 2000, 37: 179–89, 10731768, 10.1017/S0048577200981460, 1:STN:280:DC%2BD3c7ps1eitQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  12. Fehr T, Wiedenmann P, Herrmann M. Nicotine Stroop and addiction memory-an ERP study. Inter J Psychophysi, 2006, 62: 224–232, 10.1016/j.ijpsycho.2006.01.011

    Article  Google Scholar 

  13. Bar-Haim Y, Lamy D. Glickman S. Attentional bias in anxiety: A behavioral and ERP study. Brain Cogn, 2005, 59: 11–22, 15919145, 10.1016/j.bandc.2005.03.005

    Article  PubMed  Google Scholar 

  14. Goldstein R Z, Tomasi D, Rajaram S, et al. Role of the anterior cingulate and medial orbitofrontal cortex in processing durg cues in cocaine addiction. Neuroscience, 2007, 144: 1153–1159, 17197102, 10.1016/j.neuroscience.2006.11.024, 1:CAS:528:DC%2BD2sXhtVartr0%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Patterson B W, Williams H L, McLean G A, et al. Alcoholism and family history of alcoholism: Effects on visual and auditory eventrelated potentials. Alcohol, 1987, 4: 265–274, 3620095, 10.1016/0741-8329(87)90022-X, 1:STN:280:DyaL2s3pvV2luw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  16. Cadaveira F, Grau C, Roso M, et al. Multimodality exploration of event-related potentials in chronic alcoholics. Alcohol Clin Exp Res, 1991, 15: 607–611, 1928634, 10.1111/j.1530-0277.1991.tb00568.x, 1:STN:280:DyaK38%2Fis1Ortw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  17. Realmuto G, Begleiter H, Odencratz J, et al. Event-related potential evidence of dysfunction in autonomic processing in abstinent alcoholics. Biol Psychiatry 1993, 33: 594–601, 8329490, 10.1016/0006-3223(93)90097-W, 1:STN:280:DyaK3szitVWltA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  18. Polo M D, Escera C, Yago E, et al. Electrophysiological evidence of abnormal activation of the cerebral network of involuntary attention in alcoholism. Clin Neurophysiol, 2003, 114: 134–146, 12495774, 10.1016/S1388-2457(02)00336-X

    Article  PubMed  Google Scholar 

  19. Basoglu M, Salcioglu E, Livanou M. A randomised controlled study of single-session behavioural treatment of earthquake-related posttraumatic stress disorder using an earthquake simulator. Psychol med, 2007, 37: 203–213, 17254365, 10.1017/S0033291706009123

    Article  PubMed  Google Scholar 

  20. Rauch S, Whalen P, Shin L, et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: A functional MRI study. Biol Psychiatry, 2000, 47: 769–776, 10812035, 10.1016/S0006-3223(00)00828-3, 1:STN:280:DC%2BD3c3nslKisg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  21. Armony J L, Corbo V, Clement M H, et al. Amygdala response in patients with acute PTSD to masked and unmasked emotional facial expressions. Am J Psychiatry, 2005, 162: 1961–1963, 16199845, 10.1176/appi.ajp.162.10.1961

    Article  PubMed  Google Scholar 

  22. Shin L M, Wright C I, Cannistraro P A, et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry, 2005, 62: 273–281, 15753240, 10.1001/archpsyc.62.3.273

    Article  PubMed  Google Scholar 

  23. Williams L M, Kemp A H, Felmingham K, et al. Trauma modulates amygdala and medial prefrontal responses to consciously attended fear. NeuroImage, 2006, 29: 347–357, 16216534, 10.1016/j.neuroimage.2005.03.047

    Article  PubMed  Google Scholar 

  24. Sharot T, Martorella E A, Delgado M R, et al. How personal experience modulates the neural circuitry of memories of September 11. Proc Natl Acad Sci USA, 2007, 104: 389–394., 17182739, 10.1073/pnas.0609230103, 1:CAS:528:DC%2BD2sXjtlOhsA%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Ganzel B, Casey B J, Glover G, et al. The Aftermath of 9/11: Effect of Intensity and Recency of Trauma on Outcome. Emotion, 2007, 7: 227–238, 17516802, 10.1037/1528-3542.7.2.227

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dohrenwend B P. Inventorying stressful life events as risk factors for psychopathology: Toward resolution of the problem of intracategory variability. Psycholo Bull, 2006, 132:477–495, 10.1037/0033-2909.132.3.477

    Article  Google Scholar 

  27. Ilan A B, Polich J. P300 and response time from a manual Stroop task. Clin Neurophysiol, 1999, 110: 367–373, 10210626, 10.1016/S0168-5597(98)00053-7, 1:STN:280:DyaK1M3isV2rsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  28. Donchin E, Coles M G H. Is the P300 component a manifestation of context updating? Behav Brain Sci, 1988, 11: 355–372

    Google Scholar 

  29. West R, Alain C. Event-related neural activity associated with the Stroop task. Cogn Brain Res, 1999, 8: 157–164, 10.1016/S0926-6410(99)00017-8, 1:STN:280:DyaK1MzjslKgsA%3D%3D

    Article  CAS  Google Scholar 

  30. Liotti M, Woldorff M G, Perez R, et al. An ERP study of the temporal course of the Stroop color — word interference effect. Neuropsychologia, 2000, 38: 701–711, 10689046, 10.1016/S0028-3932(99)00106-2, 1:STN:280:DC%2BD3c7ls1Oitw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  31. West R. Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 2003, 41: 1122–1135, 12667546, 10.1016/S0028-3932(02)00297-X

    Article  PubMed  Google Scholar 

  32. Markela-Lerenc J, Ille N, Kaiser S, et al. Prefrontal-cingulate activation during executive control: which comes first? Cogn Brain Res, 2004, 18: 278–287, 10.1016/j.cogbrainres.2003.10.013

    Article  Google Scholar 

  33. Qiu J, Luo Y j, Wang Q h, et al. Brain mechanism of Stroop interference effect in Chinese characters. Brain Res, 2006, 1072: 186–193, 16443198, 10.1016/j.brainres.2005.12.029, 1:CAS:528:DC%2BD28XhvVWmt78%3D

    Article  PubMed  CAS  Google Scholar 

  34. Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry. The P300 as a measure of stimulus evaluation time. Science, 1977, 197: 792–795, 887923, 10.1126/science.887923, 1:STN:280:DyaE2s3js1ShtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  35. Warren C A, McDonough B E. Event-related brain potentials as indicators of smoking cue-reactivity. Clin Neurophysiol, 1999, 110: 1570–1584, 10479024, 10.1016/S1388-2457(99)00089-9, 1:STN:280:DyaK1Mvgs1Wgug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  36. Franken I H. Drug craving and addiction integrating psychological and neuropsychopharmacological approaches. Prog Neuro-psychopharmacol Biol Psychiatry, 2003, 27: 563–579, 10.1016/S0278-5846(03)00081-2

    Article  Google Scholar 

  37. Peterson B S, Skudlarski P, Gatenby J C, et al. An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry, 1999, 45: 1237–1258, 10349031, 10.1016/S0006-3223(99)00056-6, 1:STN:280:DyaK1M3nvVKnug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  38. Kern J G, Cohen J D, Stenger V A, et al. Anterior cingulated conflict monitoring and adjustments in control. Science, 2004, 303: 1023–1026, 10.1126/science.1089910, 1:CAS:528:DC%2BD2cXhtlWnu7Y%3D

    Article  Google Scholar 

  39. Cabeza R, Dolcos F, Graham R, et al. Similarities and differences in the neural correlates of episodic memory retrieval and working memory. NeuroImage, 2002, 16: 317–330, 12030819, 10.1006/nimg.2002.1063

    Article  PubMed  Google Scholar 

  40. Leube D T, Erb M, Grodd W, et al. Differential activation in parahippocampal and prefrontal cortex during word and face encoding tasks. NeuroReport, 2001, 12: 2773–2777, 11522964, 10.1097/00001756-200108280-00035, 1:STN:280:DC%2BD3MvnvFCgsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  41. Bohbot V D, Kalina M, Stepankova K, et al. Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia, 1998, 36: 1217–1238, 9842767, 10.1016/S0028-3932(97)00161-9, 1:STN:280:DyaK1M%2Fls12jsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  42. Epstein R, Kanwisher N A. Cortical representation of the local visual environment. Nature, 1998, 392: 598–601, 9560155, 10.1038/33402, 1:CAS:528:DyaK1cXis1Srurc%3D

    Article  PubMed  CAS  Google Scholar 

  43. Niki K, Luo J. An fMRI study on the time-limited role of the medial temporal lobe in long-term topographical autobiographic memory. J Cogn Neurosci, 2002, 14: 500–507, 11970809, 10.1162/089892902317362010

    Article  PubMed  Google Scholar 

  44. Sakamoto H, Fukuda T R, Okuaki T, et al. Parahippocampal activation evoked by masked traumatic images in posttraumatic stress disorder: A functional MRI study. NeuroImage, 2005, 26: 813–821, 15955491, 10.1016/j.neuroimage.2005.02.032

    Article  PubMed  Google Scholar 

  45. Shin L M, Shin P S, Heckers S, et al. Hippocampal function in posttraumatic stress disorder. Hippocampus, 2004, 14: 292–300, 15132428, 10.1002/hipo.10183

    Article  PubMed  Google Scholar 

  46. Brown R, Kulik J. Flashbulb memories. Cognition, 1977, 5: 73–99, 10.1016/0010-0277(77)90018-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingLin Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30800293), the Key Project of Philosophy and Social Science of Chinese Ministry of Education (Grant No. 08JZD0026), and the Southwest University Doctoral Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Li, H., Zhang, Q. et al. Electrophysiological evidence of personal experiences in the great Sichuan earthquake impacting on selective attention. SCI CHINA SER C 52, 683–690 (2009). https://doi.org/10.1007/s11427-009-0076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0076-6

Keywords

Navigation