Skip to main content
Log in

Glutathione exhibits antibacterial activity and increases tetracycline efficacy against Pseudomonas aeruginosa

  • Short Communication
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Glutathione (GSH) plays important roles in pulmonary diseases, and inhaled GSH therapy has been used to treat cystic fibrosis (CF) patients in clinical trials. The results in this report revealed that GSH altered the sensitivity of Pseudomonas aeruginosa to different antibiotics through pathways unrelated to the oxidative stress as generally perceived. In addition, GSH and its oxidized form inhibited the growth of P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Djordjevic V B. Free radicals in cell biology. Int Rev Cytol, 2004, 237: 57–89, 15380666, 10.1016/S0074-7696(04)37002-6, 1:CAS:528:DC%2BD2cXhtVentL3M

    Article  CAS  Google Scholar 

  2. Pastore A, Federici G, Bertini E, et al. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta, 2003, 333(1): 19–39, 12809732, 10.1016/S0009-8981(03)00200-6, 1:CAS:528:DC%2BD3sXksVOmt70%3D

    Article  CAS  Google Scholar 

  3. Griffith O W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med, 1999, 27(9–10): 922–935, 10569625, 10.1016/S0891-5849(99)00176-8, 1:CAS:528:DyaK1MXns1ymsr0%3D

    Article  CAS  Google Scholar 

  4. Meister A, Anderson M E. Glutathione. Annu Rev Biochem, 1983, 52: 711–760, 6137189, 10.1146/annurev.bi.52.070183.003431, 1:CAS:528:DyaL3sXkvVektbs%3D

    Article  CAS  Google Scholar 

  5. Schafer F Q, Buettner G R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med, 2001, 30(11): 1191–1212, 11368918, 10.1016/S0891-5849(01)00480-4, 1:CAS:528:DC%2BD3MXjsFegt78%3D

    Article  CAS  Google Scholar 

  6. Cantin A M, Hubbard R C, Crystal R G. Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am Rev Respir Dis, 1989, 139(2): 370–372, 2913886, 1:CAS:528:DyaL1MXhvFSht7o%3D

    Article  CAS  Google Scholar 

  7. Roum J H, Buhl R, McElvaney N G, et al. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol, 1993, 75(6): 2419–2424, 8125859, 1:STN:280:DyaK2c7ntFKnuw%3D%3D

    CAS  Google Scholar 

  8. Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther, 1991, 51(2): 155–194, 1784629, 10.1016/0163-7258(91)90076-X, 1:CAS:528:DyaK38Xht1Shs7g%3D

    Article  CAS  Google Scholar 

  9. Suntres Z E, Omri A, Shek P N. Pseudomonas aeruginosa-induced lung injury: role of oxidative stress. Microb Pathog, 2002, 32(1): 27–34, 11782118, 10.1006/mpat.2001.0475, 1:CAS:528:DC%2BD38Xit1ymtw%3D%3D

    Article  CAS  Google Scholar 

  10. Griese M, Ramakers J, Krasselt A, et al. Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis. Am J Respir Crit Care Med, 2004, 169(7): 822–828, 14726422, 10.1164/rccm.200308-1104OC

    Article  Google Scholar 

  11. Hartl D, Starosta V, Maier K, et al. Inhaled glutathione decreases PGE2 and increases lymphocytes in cystic fibrosis lungs. Free Radic Biol Med, 2005, 39(4): 463–472, 16043018, 10.1016/j.freeradbiomed.2005.03.032, 1:CAS:528:DC%2BD2MXmvVKgurg%3D

    Article  CAS  Google Scholar 

  12. Albesa I, Becerra M C, Battan P C, et al. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem Biophys Res Commun, 2004, 317(2): 605–609, 15063800, 10.1016/j.bbrc.2004.03.085, 1:CAS:528:DC%2BD2cXivVCrurk%3D

    Article  CAS  Google Scholar 

  13. Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol, 2000, 3(1): 3–8, 10963327, 1:CAS:528:DC%2BD3cXksVCnur0%3D

    CAS  Google Scholar 

  14. Goswami M, Mangoli S H, Jawali N. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob Agents Chemother, 2006, 50(3): 949–954, 16495256, 10.1128/AAC.50.3.949-954.2006, 1:CAS:528:DC%2BD28XisFamtL4%3D

    Article  CAS  Google Scholar 

  15. Hoang T T, Karkhoff-Schweizer R R, Kutchma A J, et al. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene, 1998, 212(1): 77–86, 9661666, 10.1016/S0378-1119(98)00130-9, 1:CAS:528:DyaK1cXjvFSgu7Y%3D

    Article  CAS  Google Scholar 

  16. Liang H, Li L, Dong Z, et al. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol, 2008, 190(18): 6217–6227, 18641136, 10.1128/JB.00428-08, 1:CAS:528:DC%2BD1cXhtFSrs77L

    Article  CAS  Google Scholar 

  17. Schweizer H P. Two plasmids, X1918 and Z1918, for easy recovery of the xylE and lacZ reporter genes. Gene, 1993, 134(1): 89–91, 8244036, 10.1016/0378-1119(93)90178-6, 1:CAS:528:DyaK2cXisVGgtg%3D%3D

    Article  CAS  Google Scholar 

  18. Dickinson D A, Forman H J. Cellular glutathione and thiols metabolism. Biochem Pharmacol, 2002, 64(5–6): 1019–1026, 12213601, 10.1016/S0006-2952(02)01172-3, 1:CAS:528:DC%2BD38Xms1ymsb4%3D

    Article  CAS  Google Scholar 

  19. Kohler T, Curty L K, Barja F, et al. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol, 2000, 182(21): 5990–5996, 11029417, 10.1128/JB.182.21.5990-5996.2000, 1:CAS:528:DC%2BD3cXns1ems7c%3D

    Article  CAS  Google Scholar 

  20. Grant S G, Jessee J, Bloom F R, et al. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA, 1990, 87(12): 4645–4649, 2162051, 10.1073/pnas.87.12.4645, 1:CAS:528:DyaK3cXkslantbg%3D

    Article  CAS  Google Scholar 

  21. Novick R. Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology, 1967, 33(1): 155–166, 4227577, 10.1016/0042-6822(67)90105-5, 1:STN:280:DyaF2s3ls1Wgtw%3D%3D

    Article  CAS  Google Scholar 

  22. Tereschuk M L, Riera M V, Castro G R, et al. Antimicrobial activity of flavonoids from leaves of Tagetes minuta. J Ethnopharmacol, 1997, 56(3): 227–232, 9201613, 10.1016/S0378-8741(97)00038-X, 1:CAS:528:DyaK2sXktF2gtr0%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KangMin Duan.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30870097 and 30611120520)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Duan, K. Glutathione exhibits antibacterial activity and increases tetracycline efficacy against Pseudomonas aeruginosa. SCI CHINA SER C 52, 501–505 (2009). https://doi.org/10.1007/s11427-009-0074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0074-8

Keywords

Navigation