DNA barcoding: species delimitation in tree peonies


Delimitations of species are crucial for correct and precise identification of taxa. Unfortunately “species” is more a subjective than an objective concept in taxonomic practice due to difficulties in revealing patterns of infra- or inter-specific variations. Molecular phylogenetic studies at the population level solve this problem and lay a sound foundation for DNA barcoding. In this paper we exemplify the necessity of adopting a phylogenetic concept of species in DNA barcoding for tree peonies (Paeonia sect. Moutan). We used 40 samples representing all known populations of rare and endangered species and several populations of widely distributed tree peonies. All currently recognized species and major variants have been included in this study. Four chloroplast gene fragments, i.e. ndhF, rps16-trnQ, trnL-F and trnS-G (a total of 5040 characters, 96 variable and 69 parsimony-informative characters) and one variable and single-copy nuclear GPAT gene fragment (2093–2197 bp, 279 variable and 148 parsimony-informative characters) were used to construct phylogenetic relationships among the taxa. The evolutionary lineages revealed by the nuclear gene and the chloroplast genes are inconsistent with the current circumscriptions of P. decomposita, P. jishanensis, P. qiui, and P. rockii based on morphology. The inconsistencies come from (1) significant chloroplast gene divergence but little nuclear GPAT gene divergence among population systems of P. decomposita + P. rockii, and (2) well-diverged nuclear GPAT gene but little chloroplast gene divergence between P. jishanensis and P. qiui. The incongruence of the phylogenies based on the chloroplast genes and the nuclear GPAT gene is probably due to the chloroplast capture event in evolutionary history, as no reproductive barriers exist to prevent inter-specific hybridization. We also evaluated the suitability of these genes for use as DNA barcodes for tree peonies. The variability of chloroplast genes among well-defined species or population systems of a species complex is 4.82 times the figure within the groups, and the GPAT gene is twice as variable between the groups as within the groups. The number of completely divergent sites is sufficient to mark the two subsections, the two species in subsection Delavayanae, and the well-divergent species in subsection Vaginatae. But the genes currently used either from the chloroplast genome or from the nuclear genome alone cannot correctly assign samples of P. decomposita, P. jishanensis, P. qiui, or P. rockii to the species as currently defined. We conclude that (1) DNA barcoding should be based on prior phylogenetic studies to understand the evolutionary lineages and how well the taxonomic species correspond to the lineages; (2) it is unlikely to find a single short fragment as a barcode for every plant and such a fragment could result in misidentification when a chloroplast capture event happened in the evolutionary history of plants like tree peonies; and (3) we suggest striving for a universal marker at the familial level and locally universal barcodes within a family instead of looking for a universal barcode for all plants.

This is a preview of subscription content, access via your institution.


  1. 1

    Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA barcodes. Proc R Soc Lond, 2003, B 270: 313–321, 10.1098/rspb.2002.2218, 1:CAS:528:DC%2BD3sXktVWiu7g%3D

    Article  Google Scholar 

  2. 2

    Hebert P D N, Penton E H, Burns J M, et al. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA, 2004, 101(41): 14812–14817, 15465915, 10.1073/pnas.0406166101, 1:CAS:528:DC%2BD2cXovVyju7g%3D

    Article  CAS  Google Scholar 

  3. 3

    Hebert P D N, Stoeckle M Y, Zemlak T S, et al. Identification of birds through DNA barcodes. PLoS Biol, 2004, 2(10): 1657–1663, 10.1371/journal.pbio.0020312, 1:CAS:528:DC%2BD2cXosVSgu7w%3D

    Article  CAS  Google Scholar 

  4. 4

    Kress W J, Wurdack K J, Zimmer E A, et al. Use of DNA barcodes to identify flowering plants. Proc Nat Acad Sci USA, 2005, 102(23): 8369–8374, 15928076, 10.1073/pnas.0503123102, 1:CAS:528:DC%2BD2MXlsV2mtbY%3D

    Article  CAS  Google Scholar 

  5. 5

    Andrews H C. The Botanist’s Repository. vol 6, London: T. Bensley, 1804

    Google Scholar 

  6. 6

    Fang W P. Notes on Chinese peonies. Acta Phytotax Sin, 1958, 7(4): 297–323, pl LM–LMIL

    Google Scholar 

  7. 7

    Rehder A. New species, varieties and combinations from Herbarium and the collections of the Arnold Arboretum. J Arn Arb, 1920, 1: 193–194

    Google Scholar 

  8. 8

    Hong T, Zhang J, Li J, et al. Study on the Chinese wild woody peonies (I): new taxa of Paeonia L. sect. Moutan DC. Bull Bot Res (Harbin), 1992, 12(3): 223–234

    Google Scholar 

  9. 9

    Hong T, Osti G L. Study on the Chinese wild woody peonies (II): new taxa of Paeonia L. sect. Moutan DC. Bull Bot Res (Harbin), 1994, 14(3): 237–240

    Google Scholar 

  10. 10

    Pei Y-L, Hong D-Y. Paeonia qiui-A new woody species of Paeonia from Hubei, China. Acta Phytotax Sin, 1995, 33: 91–93

    Google Scholar 

  11. 11

    Shen B. The origin of the traditional Chinese medicine, “Mudanpi”-A new variety of Paeonia. Acta Phytotax Sin, 1997, 35(4): 360–361

    Google Scholar 

  12. 12

    Hong D Y. Paeonia rockii and its one new subspecies from Mt. Taibai, Shaanxi of China. Acta Phytotax Sin, 1998, 36(6): 538–543

    Google Scholar 

  13. 13

    Hong D-Y, Pan K-Y, Xie Z-W. Yinpingmudan, the wild relative of the King of Flowers, Paeonia suffruticosa Andrews. Acta Phytotax Sin, 1998, 36(6): 515–520

    Google Scholar 

  14. 14

    Hong T, Dai Z L. Study on the Chinese wild woody peonies (III): New taxa of Paeonia L. sect. Moutan DC. Bull Bot Res (Harbin), 1997, 17(l): 1–5.

    Google Scholar 

  15. 15

    Hong D-Y. Paeonia (Paeoniaceae) in Xizang (Tibet). Novon, 1997, 7: 156–161, 10.2307/3392188

    Article  Google Scholar 

  16. 16

    Hong D-Y. Notes on Paeonia decomposita Hand.-Mazz. Kew Bull, 1997, 52: 957–963, 10.2307/4117822

    Article  Google Scholar 

  17. 17

    Hong D-Y, Pan K Y, Pei Y L. The identity of Paeonia decomposita Handel-Mazzetti. Taxon, 1996, 45: 67–69, 10.2307/1222586

    Article  Google Scholar 

  18. 18

    Li J, Chen D, Yu L, et al. A study on taxonomic position of Paeonia ludlowii. Bull Bot Res, 1998, 18(2):152–155, 1:CAS:528:DyaK1cXjt1ahs7g%3D

    CAS  Google Scholar 

  19. 19

    Hong D-Y, Pan K-Y, Yu H. Taxonomy of Paeonia delavayi (Paeoniaceae). Ann Missouri Bot Gard, 1998, 85: 554–564, 10.2307/2992016

    Article  Google Scholar 

  20. 20

    Stern F C. A Study of the Genus Paeonia. London: RHS, 1946

    Google Scholar 

  21. 21

    Pan K Y. Paeonia. In Flora Reipublicae Popularis Sinicae. Beijing, Science Press,1979. 27: 37–59

    Google Scholar 

  22. 22

    Haw S G, Lauener L A. A revision of the infraspecific taxa of Paeonia suffruticosa Andrews. Edinb J Bot, 1990, 47: 273–281, 10.1017/S0960428600003413

    Article  Google Scholar 

  23. 23

    Ost G L. Tree peonies revisited. The New Plantsman, 1994, 1(4): 195–205, 247

    Google Scholar 

  24. 24

    Halda J J. Systematic treatment of the genus Paeonia L. with some nomenclatural changes. Acta Mus Richnov (Sect Nat), 1997, 4(2): 25–32

    Google Scholar 

  25. 25

    Wang L. (ed.) Record of Chinese Tree Peony Varieties. Beijing: China Forestry Publishing House, 1997

    Google Scholar 

  26. 26

    Halda J J, Horacek L. New descriptions and combinations. Acta Mus Richnov (Sect Nat), 1999, 6(3): 234–238

    Google Scholar 

  27. 27

    Hong D-Y, Pan K-Y. A revision of the Paeonia suffruticosa complex (Paeoniaceae). Nord J Bot, 1999, 19: 289–299, 10.1111/j.1756-1051.1999.tb01115.x

    Article  Google Scholar 

  28. 28

    Hong D-Y, Pan K-Y. Taxonomical history and revision of Paeonia sect. Moutan (Paeoniaceae). Acta Phytotax Sin, 1999, 37(4): 351–368

    Google Scholar 

  29. 29

    Haw S G. Tree peonies: a review of their history and taxonomy. New Plantsman, 2001, 8(3): 156–171

    Google Scholar 

  30. 30

    Shen B. The study on classification, identification and revision for the medicinal plants of sect. Moutan in Paeonia from China. Li Shizhen Med Materia Media Res, 2001, 12(4): 330–333

    Google Scholar 

  31. 31

    Halda J J. The Genus Paeonia. Portland: Timber Press, 2004

    Google Scholar 

  32. 32

    Hong D-Y, Pan K-Y, Zhou Z-Q. Circumscription of Paeonia suffruticosa Andrews and identification of cultivated tree peonies. Acta Phytotax Sin, 2004, 42: 275–283

    Google Scholar 

  33. 33

    Hong T. Paeonia. In Cheng W C (ed.). Dendrologia Chinensis. Beijing: China Forestry Publishing House, 2004. 4905–4821

    Google Scholar 

  34. 34

    Sang T, Crawford D J, Stuessy T F. Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). Am J Bot, 1997, 84(9): 1120–1136, 10.2307/2446155, 1:CAS:528:DyaK2sXlvFejuro%3D

    Article  CAS  Google Scholar 

  35. 35

    Zou Y P, Cai M L, Wang Z P. Systematic studies on Paeonia sect. Moutan DC. based on RAPD analysis. Acta Phytotax Sin, 1999, 37(3): 220–227

    Google Scholar 

  36. 36

    Zhao X, Zhou Z-Q, Lin Q-B, et al. Molecular evidence for the interspecific relationships in Paeonia sect. Moutan: PCR-RFLP and sequence analysis of glycerol-3-phosphate acyltransferase (GPAT) gene. Acta Phytotax Sin, 2004, 42: 236–244

    Google Scholar 

  37. 37

    Cheng F, Li J. Exportation of Chinese tree peonies (Mudan) and their development in other countries I: cultivated. J Northwest Norm Univ (Natur Sci), 1998, 34(1): 109–116.

    Google Scholar 

  38. 38

    Hong D-Y, Pan K-Y. Paeonia cathayana D. Y. Hong & K. Y. Pan, a new tree peony, with revision of P. suffruticosa ssp. yinpingmudan. Acta Phytotax Sin, 2007, 45(3): 285–288, 10.1360/aps07043

    Article  Google Scholar 

  39. 39

    Tank D C, Sang T. Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene: Evolution and implications in Paeonia (Paeoniaceae). Mol Phylo Evol, 2001, 19: 421–429, 10.1006/mpev.2001.0931, 1:CAS:528:DC%2BD3MXkt1Sgt7o%3D

    Article  CAS  Google Scholar 

  40. 40

    Shaw J, Lickey E B, Beck J T, et al. The Tortoise and the Hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot, 2005, 92(1): 142–166, 10.3732/ajb.92.1.142, 1:CAS:528:DC%2BD2MXht1Klsbc%3D

    Article  CAS  Google Scholar 

  41. 41

    Zhou S-L, Renner S S, Wen J. Molecular phylogeny and intra- and intercontinental biogeography of Calycanthaceae. Mol Phylo Evol, 2006, 39: 1–15, 10.1016/j.ympev.2006.01.015, 1:CAS:528:DC%2BD28XisF2hsrk%3D

    Article  Google Scholar 

  42. 42

    Swofford D L. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer, Sunderland, Massachusetts, USA, 2003

    Google Scholar 

  43. 43

    Rozas J, Sanchez-Delbarria J C, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19: 2496–2497, 14668244, 10.1093/bioinformatics/btg359, 1:CAS:528:DC%2BD3sXpvVSisLo%3D

    Article  CAS  Google Scholar 

  44. 44

    Schneider S, Roessli D, Excoffier L. ARLEQUIN, ver 2000. Genetics and Biometry Laboratory, Dept Of Anthropology and Ecology, University of Geneva, Switzerland, 2000

    Google Scholar 

  45. 45

    DeSalle R. Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Bio, 2006, 20(5): 1545–1547, 10.1111/j.1523-1739.2006.00543.x

    Article  Google Scholar 

  46. 46

    Rubinoff D. Utility of mitochondrial DNA barcodes in species conservation. Conserv Bio, 2006, 20(4): 1026–1033, 10.1111/j.1523-1739.2006.00372.x

    Article  Google Scholar 

  47. 47

    Rubinoff D. DNA Barcoding Evolves into the Familiar. Conserv Bio, 2006, 20(5): 1548–1549, 10.1111/j.1523-1739.2006.00542.x

    Article  Google Scholar 

  48. 48

    Rubinoff D, Cameron S, Will K. Are plant DNA barcodes a search for the Holy Grail? Trends Ecol Evol, 2006, 21(1): 1–2, 16701459, 10.1016/j.tree.2005.10.019

    Article  Google Scholar 

  49. 49

    Smith M A, Wood D M, Janzen D H, et al. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc Natl Acad Sci USA, 2007, 104(12): 4967–4972, 17360352, 10.1073/pnas.0700050104, 1:CAS:528:DC%2BD2sXjvFKiurw%3D

    Article  CAS  Google Scholar 

  50. 50

    Smith M A, Woodley N E, Janzen D H, et al. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA, 2006, 103(10): 3657–3662, 16505365, 10.1073/pnas.0511318103, 1:CAS:528:DC%2BD28XivFWju7k%3D

    Article  CAS  Google Scholar 

  51. 51

    Zhou Z-Q, Pan, K-Y, Hong D-Y. Phylogenetic analyses of Paeonia section Moutan (tree peonies, Paeoniaceae) based on morphological data. Acta Phytotax Sin, 2003, 41: 436–446

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to ShiLiang Zhou.

Additional information

Supported by Knowledge Innovative Program of The Chinese Academy of Sciences (Grant No. KSCX2-YW-Z-0807) and National Working Platform for Basic Science and Technology (Grant No. 2005DKA21401).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, J., Wang, J., Xia, T. et al. DNA barcoding: species delimitation in tree peonies. SCI CHINA SER C 52, 568–578 (2009). https://doi.org/10.1007/s11427-009-0069-5

Download citation


  • DNA barcoding
  • evolution
  • Paeonia
  • phylogeny
  • species concept