Skip to main content
Log in

Novel strategies to mine alcoholism-related haplotypes and genes by combining existing knowledge framework

  • In Memoriam: Professor Ray Wu
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

High-throughout single nucleotide polymorphism detection technology and the existing knowledge provide strong support for mining the disease-related haplotypes and genes. In this study, first, we apply four kinds of haplotype identification methods (Confidence Intervals, Four Gamete Tests, Solid Spine of LD and fusing method of haplotype block) into high-throughout SNP genotype data to identify blocks, then use cluster analysis to verify the effectiveness of the four methods, and select the alcoholism-related SNP haplotypes through risk analysis. Second, we establish a mapping from haplotypes to alcoholism-related genes. Third, we inquire NCBI SNP and gene databases to locate the blocks and identify the candidate genes. In the end, we make gene function annotation by KEGG, Biocarta, and GO database. We find 159 haplotype blocks, which relate to the alcoholism most possibly on chromosome 1∼22, including 227 haplotypes, of which 102 SNP haplotypes may increase the risk of alcoholism. We get 121 alcoholism-related genes and verify their reliability by the functional annotation of biology. In a word, we not only can handle the SNP data easily, but also can locate the disease-related genes precisely by combining our novel strategies of mining alcoholism-related haplotypes and genes with existing knowledge framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clare A, King R D. Machine learning of functional class from phenotype data. Bioinformatics, 2002, 18: 160–166 11836224, 10.1093/bioinformatics/18.1.160, 1:CAS:528:DC%2BD38Xhs1elu70%3D

    Article  PubMed  CAS  Google Scholar 

  2. Easton D F, Pooley K A, Dunning A M. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 2007, 447: 1087–1093 17529967, 10.1038/nature05887, 1:CAS:528:DC%2BD2sXmvFKmurc%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. The International HapMap Project. Nature, 2003, 426: 789–796.

    Google Scholar 

  4. International HapMap Consortium. A haplotype map of the human genome. Nature, 2005, 437: 1299–1320

  5. Durazzo T C, Gazdzinski S, Meyerhoff D J. The neurobiological and neurocognitive consequences of chronic cigarette smoking in alcohol use disorders. Alcohol Alcoholism, 2007, 42: 174–185 10.1093/alcalc/agm020, 1:CAS:528:DC%2BD2sXosVymtrg%3D

    Article  PubMed  CAS  Google Scholar 

  6. Friesema I H, Zwietering P J, Veenstra M Y, et al. Alcohol intake and cardiovascular disease and mortality: the role of pre-existing disease. J Epidemiol Commun Health, 2007, 61: 441–446 10.1136/jech.2006.050419, 1:STN:280:DC%2BD2s3is1Srtw%3D%3D

    Article  CAS  Google Scholar 

  7. Mukamal K J, Chung H, Jenny N S, et al. Alcohol consumption and risk of coronary heart disease in older adults: the Cardiovascular Health Study. J Am Geriatr Soc, 2006, 54: 30–37 16420195, 10.1111/j.1532-5415.2005.00561.x

    Article  PubMed  Google Scholar 

  8. Li Y M. Alcoholism and alcoholic liver disease: focusing on epidemiological investigation in Asia. Hepatobiliary Pancreat Dis Int, 2005, 4: 170–172 15908309

    PubMed  Google Scholar 

  9. Fernandez-Sola J, Garcia G., Elena M, et al. Muscle antioxidant status in chronic alcoholism. Alcohol Clin Exp Res, 2002, 26: 1858–1862 12500110, 10.1111/j.1530-0277.2002.tb02493.x, 1:CAS:528:DC%2BD38Xpslarsrc%3D

    Article  PubMed  CAS  Google Scholar 

  10. Messiha F S. Subcellular alcohol and aldehyde-dehydrogenases in the genital system of the female rat. Neurobehav Toxicol Teratol, 1983, 5: 247–250 6346128, 1:CAS:528:DyaL3sXitFegsro%3D

    PubMed  CAS  Google Scholar 

  11. Calhoun F, Attilia M L, Spagnolo P A, et al. National Institute on alcohol abuse and alcoholism and the study of fetal alcohol spectrum disorders. Ann Ist Super Sanita, 2006, 42: 4–7 16801719

    PubMed  Google Scholar 

  12. Liang Y, Wang Z M, Qu W D. Evaluation of embryonic alcoholism from auditory event-related potential in fetal rats. Chin Med J (Engl), 2004, 117: 1422–1424

    Google Scholar 

  13. Malyutina S, Bobak M, Kurilovitch S, et al. Trends in alcohol intake byeducation and marital status in urburn population Russian between mid 1980s and the mid 1990s. Alcohol Alcoholism, 2004, 39(1): 64–69 10.1093/alcalc/agh022

    Article  PubMed  Google Scholar 

  14. Liu Z K, Zhang J X, Weng Z. A ten-year survey of patients with dependence on alcohol in Shandong Province (in Chinese). Chin J Behav Med Sci, 1999, 8(4): 293–295

    Google Scholar 

  15. Hasin D S, Goodwin R D, Stinson F S, et al. Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch Gen Psychiatry, 2005, 62: 1097–1106 16203955, 10.1001/archpsyc.62.10.1097

    Article  PubMed  Google Scholar 

  16. Pierucci-Lagha A. Alcoholism and aging. 1. Epidemiology, clinical aspects and treatment. Psychol Neuropsychiatr Vieil, 2003, 1: 197–205 15683955

    PubMed  Google Scholar 

  17. Dick D M, Plunkett J, Hamlin D, et al. Association analyses of the serotonin transporter gene with lifetime depression and alcohol dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample. Psychiatr Genet, 2007, 17: 35–38 17167343, 10.1097/YPG.0b013e328011188b

    Article  PubMed  Google Scholar 

  18. Kohnke M D. Approach to the genetics of alcoholism: a review based on pathophysiology. Biochem Pharmacol, 2008, 75: 160–177 17669369, 10.1016/j.bcp.2007.06.021

    Article  PubMed  Google Scholar 

  19. Preuss U W, Zill P, Koller G, et al. D2 dopamine receptor gene haplotypes and their influence on alcohol and tobacco consumption magnitude in alcohol-dependent individuals. Alcohol Alcoholism 2007, 42: 258–266 10.1093/alcalc/agm030, 1:CAS:528:DC%2BD2sXosVymtrY%3D

    Article  PubMed  CAS  Google Scholar 

  20. Artemchuk A F. The prevalence of cardiovascular pathology in alcoholism patients. Zh Nevrol Psikhiatr Im S S Korsakova, 2000, 100: 21–25 11026131, 1:STN:280:DC%2BD3cvns1ersA%3D%3D

    PubMed  CAS  Google Scholar 

  21. Prescott C A, Kendler K S, Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am J Psychiatry, 1999, 156: 34–40 9892295, 1:STN:280:DyaK1M7gsleisQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  22. Kim D J, Choi I G, Park B L, et al. Major genetic components underlying alcoholism in Korean population. Hum Mol Genet, 2008, 17: 854–858 18056758, 10.1093/hmg/ddm357, 1:CAS:528:DC%2BD1cXis1Gltbk%3D

    Article  PubMed  CAS  Google Scholar 

  23. Tolstrup J S, Nordestgaard B G., Rasmussen S, et al. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes. Pharmacogenomics J, 2008, 8:220–227 17923853, 10.1038/sj.tpj.6500471, 1:CAS:528:DC%2BD1cXmtVagsbg%3D

    Article  PubMed  CAS  Google Scholar 

  24. Barrett J C, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263–265 15297300, 10.1093/bioinformatics/bth457, 1:CAS:528:DC%2BD2MXkt1WitQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  25. Wang N, Akey J M, Zhang K, et al. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet, 2002, 71: 1227–1234 12384857, 10.1086/344398, 1:CAS:528:DC%2BD38XovFOnsr8%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Gabriel S B, Schaffner S F, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science, 2002, 296: 2225–2229 12029063, 10.1126/science.1069424, 1:CAS:528:DC%2BD38XkvFGhtrc%3D

    Article  PubMed  CAS  Google Scholar 

  27. Daly M J, Rioux J D, Schaffner S F, et al. High-resolution haplotype structure in the human genome. Nat Genet, 2001, 29: 229–232 11586305, 10.1038/ng1001-229, 1:CAS:528:DC%2BD3MXnsFKns78%3D

    Article  PubMed  CAS  Google Scholar 

  28. Patil N, Berno A J, Hinds D A, et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science, 2001, 294:1719–1723 11721056, 10.1126/science.1065573, 1:CAS:528:DC%2BD3MXoslCrsLY%3D

    Article  PubMed  CAS  Google Scholar 

  29. Zhang K, Deng M, Chen T, et al. A dynamic programming algorithm for haplotype block partitioning. Proc Natl Acad Sci USA, 2002, 99: 7335–7339 12032283, 10.1073/pnas.102186799, 1:CAS:528:DC%2BD38XktlCkt7o%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol, 1995, 12:921–927 7476138, 1:STN:280:DyaK28%2FntlClsw%3D%3D

    PubMed  CAS  Google Scholar 

  31. Rand W M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 1971, 66: 846–850 10.2307/2284239

    Article  Google Scholar 

  32. Hao L J. Alcohol and cancer. The Chinese-German Journal of Clinical Oncology, 1988, 3: 164–167

    Google Scholar 

  33. Charles K J, Deuchars J, Davies C H, et al. GABA B receptor subunit expression in glia. Mol Cell Neurosci, 2003, 24: 214–223 14550781, 10.1016/S1044-7431(03)00162-3, 1:CAS:528:DC%2BD3sXnvVyrtbo%3D

    Article  PubMed  CAS  Google Scholar 

  34. Krebs H A, Freedland R A, Hems R, et al. Inhibition of hepatic gluconeogenesis by ethanol. Biochem J, 1969, 112: 117–124 5774487, 1:CAS:528:DyaF1MXhtVCks7c%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Higley J D, Bennett A J. Central nervous system serotonin and personality as variables contributing to excessive alcohol consumption in non-human primates. Alcohol Alcohol, 1999, 34: 402–418 10414617, 1:CAS:528:DyaK1MXksleguro%3D

    Article  PubMed  CAS  Google Scholar 

  36. Bleich S, Bonsch D, Rauh J, et al. Association of the long allele of the 5-HTTLPR polymorphism with compulsive craving in alcohol dependence. Alcohol Alcohol, 2007, 42: 509–512 17711874, 1:CAS:528:DC%2BD2sXht1ejsb3I

    Article  PubMed  CAS  Google Scholar 

  37. Guan G T, Tang J S, Hu H T, et al. Alcihol dependence and Violence (in Chinese). Chin J Behav Med Sci, 2002, 11(1): 118–120

    Google Scholar 

  38. Ishiguro H, Okubo Y, Ohtsuki T, et al. Mutation analysis of the retinoid X receptor beta, nuclear-related receptor 1, and peroxisome proliferator-activated receptor alpha genes in schizophrenia and alcohol dependence: possible haplotype association of nuclear-related receptor 1 gene to alcohol dependence. Am J Med Genet, 2002, 114: 15–23 11840500, 10.1002/ajmg.1620

    Article  PubMed  Google Scholar 

  39. McClain C, Hill D, Schmidt J, et al. Cytokines and alcoholic liver disease. Semin Liver Dis, 1993, 13: 170–182 8337603, 10.1055/s-2007-1007347, 1:STN:280:DyaK3szjtFeqtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Li.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30570424, 60601010 and 30600367), the National High-Tech Research and Development Program of China, (Grant No.2007AA02Z329), the Key Science and Technology Program of Heilongjiang Province(Grant No.GB03C602-4), Natural Science Foundation of Heilongjiang Province (Grant No. F2008-02), Youth Science Foundation of Harbin Medical University (Grant No. 060045) and Science Foundation of Heilongjiang Province Education Department (Grant Nos. 11531113 and 1152hq28).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Li, X., Jiang, Y. et al. Novel strategies to mine alcoholism-related haplotypes and genes by combining existing knowledge framework. SCI CHINA SER C 52, 163–172 (2009). https://doi.org/10.1007/s11427-009-0019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0019-2

Keywords

Navigation