Science in China Series C: Life Sciences

, Volume 51, Issue 12, pp 1144–1150 | Cite as

Impacts of increased atmospheric CO2 concentration on photosynthesis and growth of micro- and macro-algae

Article

Abstract

Marine photosynthesis drives the oceanic biological CO2 pump to absorb CO2 from the atmosphere, which sinks more than one third of the industry-originated CO2 into the ocean. The increasing atmospheric CO2 and subsequent rise of pCO2 in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO3 concentration, affect photosynthetic CO2 fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO2-concentrating mechanisms (CCMs) to utilize the large HCO3 pool in seawater, enriched CO2 up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photosynthesis is not limited by CO2 in seawater, increased CO2 levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO2 levels, less light energy is required to drive CCM). Altered physiological performances under high-CO2 conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO2 oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO2 and other interacting environmental factors, and little has been documented so far to explain how physiology of marine primary producers performs in a high-CO2 and low-pH ocean.

Keywords

CO2 photosynthesis growth phytoplankton macroalgae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowes G. Facing the inevitable plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44: 309–332, 10.1146/annurev.pp.44.060193.001521, 1:CAS:528:DyaK3sXlsFKisbs%3DCrossRefGoogle Scholar
  2. 2.
    Ziska L H, Bunce J A. Plant responses to rising atmospheric carbon dioxide. In: Morison J I L, Morecroft M D, eds. Plant Growth and Climate Change. Oxford: Blackwell Publishers, 2006, 17–45, 10.1002/9780470988695.ch2CrossRefGoogle Scholar
  3. 3.
    Zhang Q, Lu C, Kuang T. Effects of the rising CO2 levels on photosynthesis. Chin Bull Bot, 1992, 9: 18–23Google Scholar
  4. 4.
    Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A metaanalytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2005, 165: 351–372, 15720649, 10.1111/j.1469-8137.2004.01224.xCrossRefPubMedGoogle Scholar
  5. 5.
    Gao K, McKinley K R. Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol, 1994, 6:45–60, 10.1007/BF02185904CrossRefGoogle Scholar
  6. 6.
    Badger M R, Andrews T J, Whitney S M, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot, 1998, 76:1052–1071, 10.1139/cjb-76-6-1052, 1:CAS:528:DyaK1cXotVeksbY%3DGoogle Scholar
  7. 7.
    Caldeira K, Wickett M E. Oceanography: anthropogenic carbon and ocean pH. Nature, 2003, 425: 365, 14508477, 10.1038/425365a, 1:CAS:528:DC%2BD3sXnsV2ktrs%3DCrossRefPubMedGoogle Scholar
  8. 8.
    Feely R A, Sabine C L, Lee K, et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 2004, 305: 362–366, 15256664, 10.1126/science.1097329, 1:CAS:528:DC%2BD2cXls1egsbY%3DCrossRefPubMedGoogle Scholar
  9. 9.
    Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2. Science, 2004, 305: 367–371, 15256665, 10.1126/science.1097403, 1:CAS:528:DC%2BD2cXls1egsbc%3DCrossRefPubMedGoogle Scholar
  10. 10.
    Behrenfeld M J, O’Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity, Nature, 2006, 444: 752–755, 17151666, 10.1038/nature05317, 1:CAS:528:DC%2BD28Xht1Ontb3MCrossRefPubMedGoogle Scholar
  11. 11.
    Quay P D, Tilbrook B, Wong C S. Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science, 1992, 256: 74–79, 17802595, 10.1126/science.256.5053.74, 1:CAS:528:DyaK38Xit1SmtLo%3DCrossRefPubMedGoogle Scholar
  12. 12.
    Murray J W, Barber R T, Roman M R, et al. Physical and biological controls on carbon cycling in equatorial pacific. Science, 1994, 266: 58–65, 17814000, 10.1126/science.266.5182.58, 1:CAS:528:DyaK2cXmtlOrt7c%3DCrossRefPubMedGoogle Scholar
  13. 13.
    Arrigo K R. Carbon cycle: Marine manipulations. Nature, 2007, 450:491–492, 18033286, 10.1038/450491a, 1:CAS:528:DC%2BD2sXhtlCrtbjJCrossRefPubMedGoogle Scholar
  14. 14.
    Raven J A. Limits on growth rates. Nature, 1993, 361: 209–210, 10.1038/361209a0CrossRefGoogle Scholar
  15. 15.
    Riebesell U, Wolf-Gladrow D A, Smetacek V S. Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 1993, 361: 249–251, 10.1038/361249a0, 1:CAS:528:DyaK3sXhs1Cqurc%3DCrossRefGoogle Scholar
  16. 16.
    Morel F M M, Reinfelder J R, Roberts S B, et al. Zinc and carbon co-limitation of marine phytoplankton. Nature, 1994, 369: 740 742, 10.1038/369740a0CrossRefGoogle Scholar
  17. 17.
    Hein M, Sand-Jensen K. CO2 increases oceanic primary production. Nature, 1997, 388: 526–527, 10.1038/41457, 1:CAS:528:DyaK2sXlt1arsbk%3DCrossRefGoogle Scholar
  18. 18.
    Schippers P, Lürling M. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol Lett, 2004, 7: 446–451, 10.1111/j.1461-0248.2004.00597.xCrossRefGoogle Scholar
  19. 19.
    Beardall J, Raven J A. The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 2004, 43: 26–40CrossRefGoogle Scholar
  20. 20.
    Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol, 2005, 56: 99–131, 15862091, 10.1146/annurev.arplant.56.032604.144052, 1:CAS:528:DC%2BD2MXmtVaru7w%3DCrossRefPubMedGoogle Scholar
  21. 21.
    Kaplan A, Badger M R, Berry J A. Photosynthesis and the intracellular inorganic pool in the blue-green alga Anabaena variabilis: Response to external CO2 concentration. Planta, 1980, 149: 219–226, 10.1007/BF00384557, 1:CAS:528:DyaL3cXlsVKmt74%3DCrossRefPubMedGoogle Scholar
  22. 22.
    Badger M R, Gallagher A. Adaptation of photosynthetic CO2 and HCO3-accumulation by the cyanobacterium synechococcus PCC6301 to growth at different inorganic carbon concentrations. Aust J Plant Physiol, 1987, 14: 189–201, 1:CAS:528:DyaL2sXkslequrY%3DGoogle Scholar
  23. 23.
    Tsuzuki M, Miyachi S. The function of carbonic anhydrase in aquatic photosynthesis. Aquat Bot, 1989, 34: 85–104, 10.1016/0304-3770(89)90051-X, 1:CAS:528:DyaL1MXltlSltLg%3DCrossRefGoogle Scholar
  24. 24.
    Raven J A. Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton relation to increased CO2 and temperature. Plant Cell Environ, 1991, 14: 779–794, 10.1111/j.1365-3040.1991.tb01442.x, 1:CAS:528:DyaK38XhsVyisbc%3DCrossRefGoogle Scholar
  25. 25.
    Raven J A. Photosynthetic and non-photosynthetic roles of carbonic anhydrase in algae and cyanobacteria. Phycologia, 1995, 34: 93–101CrossRefGoogle Scholar
  26. 26.
    Rost B, Riebesell U, Burkhardt S, et al. Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr, 2003, 48: 55–67CrossRefGoogle Scholar
  27. 27.
    Yang Y, Gao K. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol, 2003, 15: 1–11, 10.1023/A:1026021021774CrossRefGoogle Scholar
  28. 28.
    Qiu B, Gao K. Effects of CO2 enrichment on the bloom-forming cyanobacterium Microcystis aeruginosa (Cyanophyceae): physiological responses and relationships with the availability of dissolved inorganic carbon. J Phycol, 2002, 38: 721–729, 10.1046/j.1529-8817.2002.01180.x, 1:CAS:528:DC%2BD38XnsVCqtrs%3DCrossRefGoogle Scholar
  29. 29.
    Riebesell U, Wolf-Gladrow D A, Smetacek V S. Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 1993,361: 249–251, 10.1038/361249a0, 1:CAS:528:DyaK3sXhs1Cqurc%3DCrossRefGoogle Scholar
  30. 30.
    Chen X, Gao K. Photosynthetic utilisation of inorganic carbon and its regulation in the marine diatom Skeletonema costatum. Funct Plant Biol, 2004, 31:1027–1033, 10.1071/FP04076, 1:CAS:528:DC%2BD2cXosFSqu7Y%3DCrossRefGoogle Scholar
  31. 31.
    Collins S, Sültemeyer D, Bell G. Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant Cell Environ, 2006, 29: 1812–1819, 16913870, 10.1111/j.1365-3040.2006.01559.x, 1:CAS:528:DC%2BD28XhtVWktLnFCrossRefPubMedGoogle Scholar
  32. 32.
    Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 2000, 407: 364–367, 11014189, 10.1038/35030078, 1:CAS:528:DC%2BD3cXntFyrs7o%3DCrossRefPubMedGoogle Scholar
  33. 33.
    Xia J R, Gao K S. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J Integr Plant Biol, 2005, 47: 668–675, 1:CAS:528:DC%2BD28Xpt1yqsw%3D%3D, 10.1111/j.1744-7909.2005.00114.xCrossRefGoogle Scholar
  34. 34.
    Chen X, Gao K. Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracellular carbonic anhydrase in the marine diatom Skeletonema costatum. Chin Sci Bull, 2003, 48, 2616–2620, 10.1360/03wc0084, 1:CAS:528:DC%2BD2cXmslyktA%3D%3DCrossRefGoogle Scholar
  35. 35.
    Burkhardt S, Amoroso G, Riebesell U, et al. CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr, 2001, 46: 1378–1391, 1:CAS:528:DC%2BD3MXnsVSktbs%3DCrossRefGoogle Scholar
  36. 36.
    Burkhardt S, Riebesell U. CO2 availability affects elemental composition (C: N: P) of the marine diatom Skeletonema costatum. Mar Ecol Prog Ser, 1997, 155: 67–76, 10.3354/meps155067, 1:CAS:528:DyaK2sXmt12hsb4%3DCrossRefGoogle Scholar
  37. 37.
    Burkhardt S, Zondervan I, Riebesell U. Effect of CO2 concentration on C: N: P ratio in marine phytoplankton: A species comparison. Limnol Oceanogr, 1999, 44: 683–690, 1:CAS:528:DyaK1MXjs1yjs7g%3DCrossRefGoogle Scholar
  38. 38.
    Andersen T, Andersen F Ø. Effects of CO2 concentration on growth of filamentous algae and Littorella uniflora in a Danish Softwater lake. Aquat Bot, 2006, 84: 267–271, 10.1016/j.aquabot.2005.09.009, 1:CAS:528:DC%2BD28XhsF2gtbs%3DCrossRefGoogle Scholar
  39. 39.
    Qiu B S, Liu J Y. Utilization of inorganic carbon in the edible cyanobacterium Ge-Xian-Mi (Nostoc) and its role in alleviating photo-inhibition. Plant Cell Environ, 2004, 27, 1447–1458, 10.1111/j.1365-3040.2004.01248.x, 1:CAS:528:DC%2BD2MXjvFOrtg%3D%3DCrossRefGoogle Scholar
  40. 40.
    Reiskind J B, Beer S, Bowes G Photosynthesis, photorespiration and ecophysiological interactions in marine macroalgae. Aquat Bot, 1989, 34: 131–152, 10.1016/0304-3770(89)90053-3, 1:CAS:528:DyaL1MXltlSltLY%3DCrossRefGoogle Scholar
  41. 41.
    Beer S. Mechanisms of inorganic carbon acquisition in marine maroalgae (with reference to the Chlorophyta). Prog Phycol Res, 1994, 10: 179–207, 1:CAS:528:DyaK2MXlvFGhsrw%3DGoogle Scholar
  42. 42.
    Beer S, Koch E. Photosynthesis of seagrasses and marine macroalgae in globally changing CO2 environments. Mar Ecol Prog Ser, 1996, 141: 199–204, 10.3354/meps141199CrossRefGoogle Scholar
  43. 43.
    Raven J A. Inorganic carbon acquisition by marine autotrophs. Adv Bot Res, 1997, 27: 85–209, 10.1016/S0065-2296(08)60281-5, 1:CAS:528:DyaK2sXnt12msr8%3DCrossRefGoogle Scholar
  44. 44.
    Larsson C, Axelsson L. Bicarbonate uptake and utilization in marine macroalgae. Eur J Phycol, 1999, 34: 79–86, 10.1080/09670269910001736112CrossRefGoogle Scholar
  45. 45.
    Drechsler Z, Sharkia R, Cabantchik Z, et al. Bicarbonate uptake in the marine maxroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta, 1993, 191: 34–40, 10.1007/BF00240893, 1:CAS:528:DyaK3sXlsFGqsrk%3DCrossRefGoogle Scholar
  46. 46.
    Drechsler Z, Sharkia R, Cabantchik Z I, et al. The relationship of arginine groups to photosynthetic HCO3 uptake in Ulva sp. mediated by a putative anion exchanger. Planta, 1994, 194: 250–255, 10.1007/BF01101685, 1:CAS:528:DyaK2cXksFCitbY%3DCrossRefGoogle Scholar
  47. 47.
    Axelsson L, Ryberg H, Beer S. Two modes of bicarbonate utilization in the marine green macroalga Ulva lactuca. Plant Cell Environ, 1995, 18: 439–445, 10.1111/j.1365-3040.1995.tb00378.x, 1:CAS:528:DyaK2MXlslCktr4%3DCrossRefGoogle Scholar
  48. 48.
    Gao K, Aruga Y, Asada K, et al. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol, 1991, 3: 356–362CrossRefGoogle Scholar
  49. 49.
    Gao K, Aruga Y, Asada K, et al. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J Appl Phycol, 1993, 5: 563–571, 10.1007/BF02184635, 1:CAS:528:DyaK2cXjtF2isbk%3DCrossRefGoogle Scholar
  50. 50.
    Zou D H, Gao K S. Ecophysiological characteristics of four intertidal marine macroalgae during emersion along Shantou Coast of China, with a special reference to the relationship of photosynthesis and CO2. Acta Ocean Sin, 2005, 24(3): 105–113Google Scholar
  51. 51.
    Kübler J E, Johnston A M, Raven J A. The effects reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ, 1999, 22: 1303–1310, 10.1046/j.1365-3040.1999.00492.xCrossRefGoogle Scholar
  52. 52.
    Björk M, Haglund K, Ramazanov Z, et al. Inducible mechanism for HCO3 utilization and repression of photorespiration in protoplasts and thallus of three species of Ulva (Chlorophyta). J Phycol, 1993, 29: 166–173, 10.1111/j.0022-3646.1993.00166.xCrossRefGoogle Scholar
  53. 53.
    Mercado J M, Gordillo F J L, Figueroa F L, et al. External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J Exp Mar Biol Ecol, 1998, 221: 209–220, 10.1016/S0022-0981(97)00127-5, 1:CAS:528:DyaK1cXhvVSnur4%3DCrossRefGoogle Scholar
  54. 54.
    Gordillo F J L, Niell F X, Figueroa F L. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta, 2001, 213: 64–70, 11523657, 10.1007/s004250000468, 1:CAS:528:DC%2BD3MXjt1Chs7Y%3DCrossRefPubMedGoogle Scholar
  55. 55.
    García-Sânchez M J, Fernândez J A, Niell F X. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta, 1994, 194: 55–61, 10.1007/BF00201034CrossRefGoogle Scholar
  56. 56.
    Mercado J M, Javier F, Gordillo L, et al. Effects of different leverls of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol, 1999, 11: 455–461, 10.1023/A:1008194223558CrossRefGoogle Scholar
  57. 57.
    Israel A, Katz S, Dubinsky Z. et al. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhorophyta). J Appl Phycol, 1999, 11: 447–453, 10.1023/A:1008122306268CrossRefGoogle Scholar
  58. 58.
    Israel A, Hophy M. Growth, photosynthetic properties and Rubisco activies and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Glob Change Biol, 2002, 8: 831–840, 10.1046/j.1365-2486.2002.00518.xCrossRefGoogle Scholar
  59. 59.
    Zou D, Gao K S, Ruan Z X. Effects of elevated CO2 concentration on photosynthesis and nutrients uptake of Ulva lactuca. J Ocean Univ Qingdao, 2001, 31: 877–882, 1:CAS:528:DC%2BD38XislWrsw%3D%3DGoogle Scholar
  60. 60.
    Andria J R, Vergara J J, Perez-Llorens J L. Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol, 1999, 34: 497–504, 10.1080/09541449910001718851CrossRefGoogle Scholar
  61. 61.
    Gao K, Aruga Y, Asada K, et al. Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol, 1993, 117: 129–132, 10.1007/BF00346434, 1:CAS:528:DyaK2cXkt1yiCrossRefGoogle Scholar
  62. 62.
    Langdon C, Broecker W S, Hammond D E, et al. Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeocheml Cy, 2003, 17(1): 1–14Google Scholar
  63. 63.
    Maberly S C, Madsen T V. Contribution of air and water to the carbon balance of Fucus spiralis. Mar Ecol Prog Ser, 1990, 62: 175–183, 10.3354/meps062175CrossRefGoogle Scholar
  64. 64.
    Peňa E J, Zingmark R, Nietch C. Comparative photosynthesis of two species of intertidal epiphytic macroalgae on mangrove roots during submersion and emersion. J Phycol, 1999, 35: 1206–1214, 10.1046/j.1529-8817.1999.3561206.xCrossRefGoogle Scholar
  65. 65.
    Mercado J M, Niell F X. Carbon dioxide uptake by Bostrychia scorpioides (Rhodophyceae) under emersed conditions. Eur J Phycol, 2000, 35: 45–51, 10.1080/09670260010001735611CrossRefGoogle Scholar
  66. 66.
    Zou D H, Gao K S. Exogenous carbon acquisition of photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta) under emersed state. Prog Nat Sci, 2004,14(2): 34–40, 10.1080/10020070412331343271CrossRefGoogle Scholar
  67. 67.
    Gao K, Ji Y, Aruga Y. Relationship of CO2 concentrations to photosynthesis of intertidal macrioalgae during emersion. Hydrobiologia, 1999, 398/399: 355–359, 10.1023/A:1017072303189CrossRefGoogle Scholar
  68. 68.
    Zou D H, Gao K S. Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur J Phycol, 2002, 37: 587–592, 10.1017/S0967026202003876CrossRefGoogle Scholar
  69. 69.
    Zou D H, Gao K S, Run Z X. Daily timing of emersion and elevated atmospheric CO2 concentration affect photosynthetic performance of the intertidal macroalga Ulva lactuca (Chorophyta) in sunlight. Bot Mar, 2007, 50: 275–279, 10.1515/BOT.2007.031, 1:CAS:528:DC%2BD1cXhtFOjsro%3DCrossRefGoogle Scholar
  70. 70.
    Zou D H. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture, 2005, 250: 726–735, 10.1016/j.aquaculture.2005.05.014, 1:CAS:528:DC%2BD2MXht1OrsLnNCrossRefGoogle Scholar
  71. 71.
    Gao K, Guan W, Helbling E W. Effects of solar ultraviolet radiation on photosynthesis of the marine red tide alga Heterosigma akashiwo (Raphidophyceae). J Photoch Photobio B, 2007, 86: 140–148, 10.1016/j.jphotobiol.2006.05.007, 1:CAS:528:DC%2BD2sXhsFentw%3D%3DCrossRefGoogle Scholar
  72. 72.
    Gao K, Wu Y P, Li G, et al. Solar UV-radiation drives CO2-fixation in marine phytoplankton: A double-edged sword. Plant Physiol, 2007, 144: 54–59, 17494919, 10.1104/pp.107.098491, 1:CAS:528:DC%2BD2sXls1Kjsbo%3DCrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Wu H Y, Gao K, Villafañe V E, et al. Effects of solar UV radiation on morphology and photosynthesis of the filamentous cyanobacterium, Arthrospira platensis. Appl Environ Microb, 2005, 71(9): 5004–5013, 10.1128/AEM.71.9.5004-5013.2005, 1:CAS:528:DC%2BD2MXhtVahsbnNCrossRefGoogle Scholar
  74. 74.
    Gao K, Li P, Watanabe T, et al. Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis and DNA of Arthrospira (Spirulina) platensis (Cyanophyta). J Phycol, 2008, 44: 777–786, 10.1111/j.1529-8817.2008.00512.xCrossRefGoogle Scholar
  75. 75.
    Riebesell U, Schulz K G, Bellerby R G J, et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature, 2007, 450: 544–549, 10.1038/nature06267, 1:CAS:528:DC%2BD2sXhtlCrtbrICrossRefGoogle Scholar
  76. 76.
    Collins S, Bell G. Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga. Nature, 2004, 431: 566–569, 15457260, 10.1038/nature02945, 1:CAS:528:DC%2BD2cXnvFCnurk%3DCrossRefPubMedGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Marine Biology InstituteShantou UniversityShantouChina
  2. 2.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina

Personalised recommendations