Skip to main content
Log in

Involvement of insulin in early development of mouse one-cell stage embryos

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Recent studies have suggested that growth factors and hormones play important roles in cell proliferation and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage embryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expression, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapamycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These results suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stockhorst U, de Fries D, Steingrueber H J, et al. Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav, 2004, 83: 47–54, 15501490, 1:CAS:528:DC%2BD2cXovV2gtLs%3D

    Article  PubMed  CAS  Google Scholar 

  2. Petruzzelli L, Herrera R, Garcia-Arenas R, et al. Acquisition of insulin-dependent protein tyrosine kinase activity during Drosophila embryogenesis. J Biol Chem, 1985, 260(30): 16072–16075, 3934169, 1:CAS:528:DyaL28Xkt1ajsrk%3D

    PubMed  CAS  Google Scholar 

  3. Heyner S, Smith R M, Schultz G A.. Temporally regulated expression of insulin and insulin-like growth factors and their receptors in early mammalian development. Bioessays, 2004, 11: 171–176, 10.1002/bies.950110604

    Article  Google Scholar 

  4. Haruta T, Uno T, Kawahara J, et al. A rapamycin-sensitive pathway down-regulates insulin signal via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol, 2000, 14: 783–794, 10847581, 10.1210/me.14.6.783, 1:CAS:528:DC%2BD3cXlt1Wgtr8%3D

    Article  PubMed  CAS  Google Scholar 

  5. Greene M W, H. Sakaue, Wang L, et al. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem, 2003, 278: 8199–8211, 12510059, 10.1074/jbc.M209153200, 1:CAS:528:DC%2BD3sXhsF2hsrs%3D

    Article  PubMed  CAS  Google Scholar 

  6. Carlson C J, White M F, Rondinone C M. Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochem Biophys Res Commun, 2000, 316: 533–539, 10.1016/j.bbrc.2004.02.082

    Article  Google Scholar 

  7. Murakami M, Ichisaka T, Maeda M, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol, 2004, 24: 6710–6718, 15254238, 10.1128/MCB.24.15.6710-6718.2004, 1:CAS:528:DC%2BD2cXmtlKltbY%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Hogan B, Constantini L E. Manipulating the mouse embryos: A laboratory manual. NewYork: Cold Spring Harbor Laboratory Press, 1986. 249–250

    Google Scholar 

  9. Laemmli V K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680–685, 5432063, 10.1038/227680a0, 1:CAS:528:DC%2BD3MXlsFags7s%3D

    Article  PubMed  CAS  Google Scholar 

  10. Gallicano G L, Mcgaughey W M, Capco D G. Activation of protein kinase C after fertilization is required for remodeling the mouse egg into the zygote. Mol Reprod Dev, 1997, 46: 587–601, 9094105, 10.1002/(SICI)1098-2795(199704)46:4<587::AID-MRD16>3.0.CO;2-T, 1:CAS:528:DyaK2sXit1aisb4%3D

    Article  PubMed  CAS  Google Scholar 

  11. Yu B Z, Zheng J, Yu A M, et al. Effects of protein kinase C on M-phase promotin factor in early development of fertilized mouse eggs. Cell Biochem Funct, 2004, 22: 291–298, 15338468, 10.1002/cbf.1103, 1:CAS:528:DC%2BD2cXnvVeit70%3D

    Article  PubMed  CAS  Google Scholar 

  12. Yu B, Wang Y, Liu Y, et al. Protein kinase A regulates cell cycle progression of mouse one-cell stage embryos by means of MPF. Dev Dynam, 2005, 232(1): 98–105, 10.1002/dvdy.20205, 1:CAS:528:DC%2BD2MXot1Wltw%3D%3D

    Article  CAS  Google Scholar 

  13. Adashi E Y, Resnick C E, Payne D W, et al. The mouse intraovarian insulin-like growth factor I system: Departures from the rat paradigm. Endocrinology, 1997, 138: 3881–3890, 9275078, 10.1210/en.138.9.3881, 1:CAS:528:DyaK2sXlsFejur8%3D

    PubMed  CAS  Google Scholar 

  14. Poretsky L, Cataldo N A, Rosenwaks Z, et al. The insulin-related ovarianregulatory system in health and disease. Endocr Rev, 1999, 20: 535–582, 10453357, 10.1210/er.20.4.535, 1:CAS:528:DyaK1MXlvVOnsb0%3D

    Article  PubMed  CAS  Google Scholar 

  15. Willis D, Mason H, Gilling-Smith C, et al. Modulation by insulin of follicle stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab, 1996, 81: 302–309, 8550768, 10.1210/jc.81.1.302, 1:CAS:528:DyaK28XkvVyqug%3D%3D

    PubMed  CAS  Google Scholar 

  16. Frias M A, Thoreen C C, Jaffe J D, et al. mSin1 is necessary for PKB/PKB phosphorylation, and its isoforms define thouree distinct mTORC2s. Curr Biol, 2006, 16(18): 1865–1870, 16919458, 10.1016/j.cub.2006.08.001, 1:CAS:528:DC%2BD28Xps1Ons7s%3D

    Article  PubMed  CAS  Google Scholar 

  17. Matsushima R, Harada N, Webster N J, et al. Effect of TRB3 on insulin and nutrient-stimulated hepatic p70 S6 kinase activity. J Biol Chem, 2006, 281(40): 29719–29729, 16887816, 10.1074/jbc.M511636200, 1:CAS:528:DC%2BD28XhtVahsb%2FO

    Article  PubMed  CAS  Google Scholar 

  18. Wang L, Rhodes C J, Lawrence J C Jr. Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1. J Biol Chem, 2006, 281: 24293–24303, 16798736, 10.1074/jbc.M603566200, 1:CAS:528:DC%2BD28Xot1eqs7c%3D

    Article  PubMed  CAS  Google Scholar 

  19. Rosenblum I Y, Mattson B A, Heyner S. Stage-specific insulin binding in mouse preimplantation embryos. Dev Biol, 1986, 116: 261–263, 3525278, 10.1016/0012-1606(86)90063-1, 1:CAS:528:DyaL28Xkslejtbo%3D

    Article  PubMed  CAS  Google Scholar 

  20. Han E K, Leverson J D, McGonigal T, et al. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibitor. Oncogene, 2007, 26(38): 5655–5661, 17334390, 10.1038/sj.onc.1210343, 1:CAS:528:DC%2BD2sXptFemtLY%3D

    Article  PubMed  CAS  Google Scholar 

  21. Alpert E, Gruzman A, Tennenbaum T, et al. Selective cyclooxygenase-2 inhibitors stimulate glucose transport in L6 myotubes in a protein kinase Cdelta-dependent manner. Biochem Pharmacol, 2007, 73: 368–377, 17098211, 10.1016/j.bcp.2006.10.008, 1:CAS:528:DC%2BD2sXht1SmsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  22. Dann S G, Thomas G. The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett, 2006, 580: 2821–2829, 16684541, 10.1016/j.febslet.2006.04.068, 1:CAS:528:DC%2BD28XltVKntrk%3D

    Article  PubMed  CAS  Google Scholar 

  23. Yeshao W, Gu J, Peng X, et al. Elevated glucose activates protein synthesis in cultured cardiac myocytes. Metabolism, 2005, 54: 1453–1460, 16253633, 10.1016/j.metabol.2005.05.010, 1:CAS:528:DC%2BD2MXhtFKmurfF

    Article  PubMed  CAS  Google Scholar 

  24. Chen F, Yu A M, Feng C, et al. Activity and expression changes of protein kinase B in 1-cell stage fertilized eggs of mouse. Chin J Biochem Mol Biol, 2003, 19(4): 542–545, 1:CAS:528:DC%2BD3sXmvVSntrw%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BingZhi Yu.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30570945)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, B., Zhang, Z., Deng, X. et al. Involvement of insulin in early development of mouse one-cell stage embryos. SCI CHINA SER C 51, 767–773 (2008). https://doi.org/10.1007/s11427-008-0113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0113-x

Keywords

Navigation