Skip to main content
Log in

Tracheal compliance and limit flow rate changes in a murine model of asthma

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Trachea is the unique passage for air to flow in and out. Its tone is of importance for the respiration system. However, investigation on how tracheal tone changes due to asthma is limited. Aiming at studying how the mechanical property changes due to asthma as well as the compliance and flow limitation, the following methods are adopted. Static and passive pressure-volume tests of rats’ trachea of the asthmatic and control groups are carried out and a new type of tube law is formulated to fit the experimental data, based on which changes of compliance and limit flow rate are investigated. In order to give explanation to such changes, histological examinations with tracheal soft tissues are made. The results show that compliance, limit flow rate and material constants included in the tube law largely depend on the longitudinal stretching ratio. Compared with the control group, the tracheal compliance of asthmatic animals decreases significantly, which results in an increased limit flow rate. Histological studies indicate that asthma can lead to hyperplasia/hypertrophy of smooth muscle cells, and increase elastin and collagen fibres in the muscular membrane. Though decreasing compliance increases stability, during the onset of asthma, limit flow rate is much smaller due to the lower transmural pressure. Asthma leads to a stiffer trachea and the obtained results reveal some aspects relevant to asthma-induced tracheal remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Institutes of Health. National Heart, Lung, and Blood Institute. Data release for World Asthma Day, May 2001

  2. Kaczka D W, Ingenito E P, Israel E, et al. Airway and lung tissue mechanics in asthma: Effects of albuterol. Am J Respir Cril Care Med, 1999, 159: 169–178 1:STN:280:DyaK1M%2FptFynuw%3D%3D

    Article  CAS  Google Scholar 

  3. McFadden E R. Asthma. In: Fauci A S, Braunwald E, Isselbacher K J, et al., Eds. Harrison’s Principles of Internal Medicine. New York: McGraw-Hill, 1998. 1419–1426

    Google Scholar 

  4. Boczkowski J, Murciano D, Pichot M-H, et al. Expiratory Flow limitation in stable asthmatic patients during resting breathing. Am J Respir Cril Care Med, 1997, 156: 752–757 1:STN:280:DyaK2svlsFOlug%3D%3D

    Article  CAS  Google Scholar 

  5. Pedersen O F, Brackel H J L, Bogaard J M, et al. Wave-speed-determined flow limitation at peak flow in normal and asthmatic subjects. J Appl Physiol, 1997, 83: 1721–1732 9375344, 1:STN:280:DyaK1c%2Fkt12itg%3D%3D

    PubMed  CAS  Google Scholar 

  6. Penn R B, Wolfson M R, Shaffer T H. Influence of smooth muscle tone and longitudinal tension on the collapsibility of immature airways. Pediatr Pulmonol, 1988, 5: 132–138 3194153, 10.1002/ppul.1950050303, 1:STN:280:DyaL1M%2Flslekug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  7. McQuaid E L, Fritz G K, Nassau J H, et al. Stress and airway resistance in children with asthma. J Psychosomat Res, 2000, 49: 239–245 10.1016/S0022-3999(00)00173-2, 1:STN:280:DC%2BD3M7itVylsQ%3D%3D

    Article  CAS  Google Scholar 

  8. Johns D P, Wilson J, Harding R, et al. Airway distensibility in healthy and asthmatic subjects: Effect of lung volume history. J Appl Physiol, 2000, 88: 1413–1420 10749837, 1:STN:280:DC%2BD3c3hsV2nuw%3D%3D

    PubMed  CAS  Google Scholar 

  9. Ward C, Johns D P, Bish R, et al. Reduced airway distensibility, fixed airflow limitation, and airway wall remodeling in asthma. Am J Respir Crit Care Med, 2001, 164: 1718–1721 11719315, 1:STN:280:DC%2BD38zgsVeqtw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  10. Gunst S J, Stropp J Q, Service J. Mechanical modulation of pressure-volume characteristics of contracted canine airways in vitro. J Appl Physiol, 1990, 68: 2223–2229 2361927, 1:STN:280:DyaK3c3pvFOnuw%3D%3D

    PubMed  CAS  Google Scholar 

  11. Balzar S, Chu H W, Strand M, et al. Relationship of small airway chymase-positive mast cells and lung function in severe asthma. Am J Respir Crit Care Med, 2005, 171: 431–439 15563633, 10.1164/rccm.200407-949OC

    Article  PubMed  Google Scholar 

  12. http://www.marvistavet.com/html/body_tracheal_collapse.html

  13. Koulouris N G, Valta P, Lavoie A, et al. A simple method to detect expiratory flow limitation during spontaneous breathing. Eur Respir J, 1995, 8: 306–313 7758567, 10.1183/09031936.95.08020306, 1:STN:280:DyaK2M3nvVehtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  14. Eltayara L, Becklake M R, Volta C A, et al. Relationship between chronic dyspnea and expiratory flow-limitation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 1996, 154: 1726–1734 8970362, 1:STN:280:DyaK2s7isFarsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  15. Croteau J R, Cook C D. Volume-pressure and length-tension measurements in human tracheal and bronchial segments. J Appl Physiol, 1961, 16: 170–172 13696635, 1:STN:280:DyaF3c%2Fhs1Snsw%3D%3D

    PubMed  CAS  Google Scholar 

  16. Tiddens H A W M, Hofhuis W, Bogaard J M, Hop W C J, de Bruin H., Willems L N A, de Jongste J C, Compliance, Histeresis and Collapsibility of Human Small Airways, Am J Respir Crit Care Med., 160: 1110–1118, 1999. 10508795, 1:STN:280:DyaK1MvjvFyhsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  17. Panitch H B, Talmaciu I, Heckman J, et al. Quantitative bronchoscopic assessment of airway collapsibility in newborn lamb tracheae. Pediatr Res, 1998, 43: 832–839 9621995, 10.1203/00006450-199806000-00018, 1:STN:280:DyaK1c3otleitg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  18. Mitchell H W, Turner D J, Gray P R, et al. Compliance and stability of the bronchial wall in a model of allergen-induced lung inflammation. J Appl Physiol, 1999, 86: 932–937 10066707, 1:STN:280:DyaK1M7pvFemuw%3D%3D

    PubMed  CAS  Google Scholar 

  19. Evans K L J, Bond R A, Corry D B, et al. Frequency dependence of respiratory system mechanics during induced constriction in a murine model of asthma. J Appl Physiol, 2003, 94: 245–252 12486022, 10.1063/1.1579128, 1:CAS:528:DC%2BD3sXksl2qt7o%3D

    Article  PubMed  Google Scholar 

  20. Wagers S, Lundblad L K A, Ekman M, et al. The allergic mouse model of asthma: Normal smooth muscle in an abnormal lung? J Appl Physiol, 2004, 96: 2019–2027 14660507, 10.1152/japplphysiol.00924.2003

    Article  PubMed  Google Scholar 

  21. Bates J H T, Irvin C G. Measuring lung function in mice: The phenotyping uncertainty principle. J Appl Physiol, 2003, 94: 1297–1306 12626466

    Article  PubMed  Google Scholar 

  22. Fung Y C. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag, 1990

    Book  Google Scholar 

  23. Hayashi K, Takamizawa K. Stress and strain distributions and residual stresses in arterial walls. In: Fung Y C, Hayashi K, Seguchi Y, eds. Progress and New Direction of Biomechanics. Tokyo: MITA Press, 1989

    Google Scholar 

  24. Reid P E. Histochemistry Laboratory Manual. Vancouver: Department of Pathology, University of British Columbia, 1994. 59–62

    Google Scholar 

  25. Flaherty J E, Keller J B, Rubinow S I. Post buckling behavior of elastic tubes and rings with opposite sides in contact. SIAM J Appl Math, 1972, 23: 446–455 10.1137/0123047

    Article  Google Scholar 

  26. Shapiro A H. Steady Flow in Collapsible Tubes. Trans ASME Ser K. J Biomech Engng, 1977, 99: 126–147

    Article  Google Scholar 

  27. Dawson S V, Elliott E A. Wave-speed limitation on expiratory flow-a unifying concept. J Appl Physiol, 1977, 43: 498–515 914721, 1:STN:280:DyaE1c%2Fis1aiug%3D%3D

    PubMed  CAS  Google Scholar 

  28. Costantino M L, Bagnoli P, Dini G, et al. A numerical and experimental study of compliance and collapsibility of preterm lamb tracheae. J Biomechan, 2004, 37: 1837–1847 10.1016/j.jbiomech.2004.02.035, 1:STN:280:DC%2BD2crksl2lsg%3D%3D

    Article  CAS  Google Scholar 

  29. Brackel H J, Pedersen O F, Mulder P G H, et al. Central airways behave more stiffly during forced expiration in patients with asthma. Am J Respir Crit Care Med, 2000, 162: 896–904 10988102, 1:STN:280:DC%2BD3cvotFamtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  30. Wang L, McParland B E, Paré P D. The functional consequences of structural changes in the airways. Chest, 2003, 123: 356S–362S 12628973, 10.1378/chest.123.3_suppl.356S-a

    Article  PubMed  Google Scholar 

  31. Rachev A, Stergiopulos N, Meister J-J. A model for geometric and mechanical adaptation of arteries to sustained hypertension. J Biomech Engng, 1998, 120: 9–17 10.1115/1.2834313, 1:STN:280:DyaK1czktVaktg%3D%3D

    Article  CAS  Google Scholar 

  32. Taber L A. A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng, 1998, 120: 348–354 10412402, 10.1115/1.2798001, 1:STN:280:DyaK1MzktV2isQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  33. James A L, Paré P D, Hogg J C. The mechanics of airway narrowing in asthma. Am Rev Respir Dis, 1989, 139: 242–246 2912345, 1:STN:280:DyaL1M7gsVSmsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  34. Ebina M, Yaegashi H, Chiba R, et al. Hyperreactive site in the airway tree of asthmatic patients revealed by thickening of bronchial muscles. Am Rev Respir Dis, 1990, 141: 1327–1332 2187387, 1:STN:280:DyaK3c3ltlSqsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  35. Kuwano K, Bosken C H, Pare P D, et al. Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis, 1993, 148: 1220–1225 8239157, 1:STN:280:DyaK2c%2FlslKqsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  36. Carroll N, Elliot J, Morton A, et al. The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis, 1993, 147: 405–410 8430966, 1:STN:280:DyaK3s7lvV2qug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  37. Schellenberg R R, Paré P D, Hards J, et al. Smooth muscle mechanics: Implications for airway hyperresponsiveness. Int Arch Allergy Appl Immunol, 1991, 94(suppl): 291–292 1937893, 1:STN:280:DyaK38%2FktValtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  38. Thomson R J, Bramley A M, Schellenberg R R. Airway muscle stereology: Implications for increased shortening in asthma. Am J Respir Crit Care Med, 1996, 154: 749–757 8810615, 1:STN:280:DyaK28vgs1Gjsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  39. Han H C, Fung Y C. Residual strains in porcine and canine trachea. J Biomechan, 1991, 24: 307–315 10.1016/0021-9290(91)90349-R, 1:STN:280:DyaK3M3mvVSqug%3D%3D

    Article  CAS  Google Scholar 

  40. Teng Z Z, Liu Z R, Lin Y H, et al. Study on cartilaginous and muscular strains of rat trachea. Sci China Ser C-Life Sci, 2004, 47: 485–493 10.1360/03yc0130

    Article  Google Scholar 

  41. Begis D, Delpuech C, Le Tallec P, et al. A finite-element model of tracheal collapse. J. Appl Physiol, 1988, 64: 1359–1368 3378971, 1:STN:280:DyaL1c3ktlKisg%3D%3D

    PubMed  CAS  Google Scholar 

  42. McKay K O, Wiggs B R, Paré P D, et al. Zero-stress state of intra-and extraparenchymal airways from human, pig, rabbit, and sheep lung. J Appl Physiol, 2002, 92: 1261–1266 11842066

    Article  PubMed  Google Scholar 

  43. Bhutani V K, Shaffer T H. Effect of liquid ventilation on preterm lamb tracheal mechanics. Biol Neonate, 1983, 44: 257–263 6639995, 1:STN:280:DyaL2c%2FltlCquw%3D%3D, 10.1159/000241725

    Article  PubMed  CAS  Google Scholar 

  44. Lai Y L, Chou H C. Respiratory mechanics and maximal expiratory flow in the anesthetized mouse. J Appl Physiol, 2000, 88: 939–943 10710389, 1:STN:280:DC%2BD3c7nsFGmsA%3D%3D

    PubMed  CAS  Google Scholar 

  45. Teng Z Z, Ji G Y, Chu H J, et al. Does PGA external stenting reduce compliance mismatch in venous grafts? BioMed Eng OnLine, 2007, 6: 12 17437638, 10.1186/1475-925X-6-12

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongZhao Teng.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 19972042) and the Juan de la Cierva Program, Spain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, Z., Wang, Y., Li, F. et al. Tracheal compliance and limit flow rate changes in a murine model of asthma. SCI CHINA SER C 51, 922–931 (2008). https://doi.org/10.1007/s11427-008-0108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0108-7

Keywords

Navigation