Skip to main content
Log in

Overexpression of a tobacco small G protein gene NtRop1 causes salt sensitivity and hydrogen peroxide production in transgenic plants

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The small GTPases of Rop/Rho family is central regulators of important cellular processes in plants. Tobacco small G protein gene NtRop1 has been isolated; however, its roles in stress responses were unknown. In the present study, the genomic sequence of NtRop1 was cloned, which has seven exons and six introns, similar to the Rop gene structure from Arabidopsis. The NtRop1 gene was constitutively expressed in the different organs whereas the other six Rop genes from tobacco had differential expression patterns. The expression of the NtRop1 gene was moderately induced by methyl viologen, NaCl, and ACC treatments, but slightly inhibited by ABA treatment, with no significant induction by NAA treatment. The transgenic Arabidopsis plants overexpressing the NtRop1 showed increased salt sensitivity as can be seen from the reduced root growth and elevated relative electrolyte leakage. The hydrogen peroxide production was also promoted in the NtRop1-trangenic plants in comparison with wild type plants. These results imply that the NtRop1 may confer salt sensitivity through activation of H2O2 production during plant response to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H, She J J, Zheng Z L, Lin Y, et al. The Rop GTPase switch controls multiple developmental processes in Arabidopsis, Plant Physiol, 2001, 126: 670–684 11402196, 10.1104/pp.126.2.670, 1:CAS:528:DC%2BD3MXks1Gmsrk%3D

    Article  CAS  Google Scholar 

  2. Gu Y, Wang Z, Yang Z. ROP/RAC GTPase: An old new master regulator for plant signaling. Curr Opin Plant Biol, 2004, 7: 527–536 15337095, 10.1016/j.pbi.2004.07.006, 1:CAS:528:DC%2BD2cXntV2msL0%3D

    Article  CAS  Google Scholar 

  3. Assmann S M. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell, 2002, 14: S355–S373 12045288, 1:CAS:528:DC%2BD38XksV2hu7c%3D

    CAS  Google Scholar 

  4. Perfus-Barbeoch L, Jones A M, Assmann S M. Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol, 2004, 7: 719–731 15491922, 10.1016/j.pbi.2004.09.013, 1:CAS:528:DC%2BD2cXos1Cht78%3D

    Article  CAS  Google Scholar 

  5. McCudden C R, Hains M D, Kimple R J, et al. G-protein signaling: back to the future. Cell Mol Life Sci, 2005, 62: 551–577 15747061, 10.1007/s00018-004-4462-3, 1:CAS:528:DC%2BD2MXksVags7k%3D

    Article  CAS  Google Scholar 

  6. Nibau C, Wu H M, Cheung A Y, RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci, 2006, 11: 309–315 16737841, 10.1016/j.tplants.2006.04.003, 1:CAS:528:DC%2BD28XlvFGqurs%3D

    Article  CAS  Google Scholar 

  7. Vernoud V, Horton A C, Yang Z, et al. Analysis of the small GTPase gene superfamily of Arabidopsis thaliana. Plant Physiol, 2003, 131: 1191–1208 12644670, 10.1104/pp.013052, 1:CAS:528:DC%2BD3sXisFelsrw%3D

    Article  CAS  Google Scholar 

  8. Sorek N, Poraty L, Sternberg H, et al. Activation status-coupled transient S acylation determines membrane partitioning of a plant Rho-related GTPase. Mol Cell Biol, 2007, 27: 2144–2154 17242203, 10.1128/MCB.02347-06, 1:CAS:528:DC%2BD2sXjsVSrsL0%3D

    Article  CAS  Google Scholar 

  9. Yang Z. Small GTPases: Versatile signaling switches in plants. Plant Cell, 2002, 14: S375–S388 12045289, 1:CAS:528:DC%2BD38XksV2gsr4%3D

    CAS  Google Scholar 

  10. Winge P, Brembu T, Kristensen R, et al. Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics, 2000, 156: 1959–1971 11102387, 1:CAS:528:DC%2BD3MXjsFGgtA%3D%3D

    CAS  Google Scholar 

  11. Gu Y, Vernoud V, Fu Y, et al. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot, 2003, 54: 93–101 12456759, 10.1093/jxb/54.380.93, 1:CAS:528:DC%2BD3sXlt1KktQ%3D%3D

    Article  CAS  Google Scholar 

  12. Lemichez E, Wu Y, Sanchez J P, et al. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes Dev, 2001, 15: 1808–1816 11459830, 10.1101/gad.900401, 1:CAS:528:DC%2BD3MXlsFanu7o%3D

    Article  CAS  Google Scholar 

  13. Baxter-Burrell A, Yang Z, Springer P S, et al. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science, 2002, 296: 2026–2028 12065837, 10.1126/science.1071505, 1:CAS:528:DC%2BD38Xks1eqtLo%3D

    Article  CAS  Google Scholar 

  14. Neill S, Desikan R, Hancock and J. Hydrogen peroxide signaling. Curr Opin Plant Biol, 2002, 5: 388–395 12183176, 10.1016/S1369-5266(02)00282-0, 1:CAS:528:DC%2BD38XmtlGjtL8%3D

    Article  CAS  Google Scholar 

  15. Bailey-Serres J, Mittler R. The role of reactive oxygen species in plant cells. Plant Phyiol, 2006, 141: 311 10.1104/pp.104.900191, 1:CAS:528:DC%2BD28Xmt1aksLs%3D

    Article  CAS  Google Scholar 

  16. Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot, 2006, 98: 279–288 16740587, 10.1093/aob/mcl107, 1:CAS:528:DC%2BD28Xpt1yltLk%3D

    Article  CAS  Google Scholar 

  17. Noctor G, De Paepe R, Foyer C H. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci, 2007, 12: 125–134 17293156, 10.1016/j.tplants.2007.01.005, 1:CAS:528:DC%2BD2sXivVShtr8%3D

    Article  CAS  Google Scholar 

  18. Ono E, Wong H L, Kawasaki T, et al. Essential role of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA, 2001, 98: 759–764 11149940, 10.1073/pnas.021273498, 1:CAS:528:DC%2BD3MXnslKluw%3D%3D

    Article  CAS  Google Scholar 

  19. Lieberherr D, Thao N P, Nakashima A, et al. RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. Plant Cell, 2005, 17: 2369–2393 10.1105/tpc.105.032987, 1:CAS:528:DC%2BD2MXpsFGjsb8%3D

    Article  Google Scholar 

  20. Morel J, Fromentin J, Blein J P, et al. Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant J, 2004, 37: 282–293 14690511, 1:CAS:528:DC%2BD2cXhsVGlur0%3D

    Article  CAS  Google Scholar 

  21. Schultheiss H, Hensel G, Imani J, et al. Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol, 2005, 139: 353–362 16126850, 10.1104/pp.105.066613, 1:CAS:528:DC%2BD2MXhtVCgur3J

    Article  CAS  Google Scholar 

  22. Zhou H L, Cao W H, Cao Y R, et al. Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett, 2006, 580: 1239–1350 16442528, 10.1016/j.febslet.2006.01.037, 1:CAS:528:DC%2BD28Xhs1Snsb8%3D

    Article  CAS  Google Scholar 

  23. He X J, Mu R L, Cao W H, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J, 2005, 44: 903–916 16359384, 10.1111/j.1365-313X.2005.02575.x, 1:CAS:528:DC%2BD28XjslGmuw%3D%3D

    Article  CAS  Google Scholar 

  24. Luo G Z, Wang H W, Haung J, et al. A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol, 2005, 59: 809–820 16270232, 10.1007/s11103-005-1386-0, 1:CAS:528:DC%2BD2MXhtFyntrbK

    Article  CAS  Google Scholar 

  25. Cao W H, Dong Y, Zhang J S, et al. Characterization of an ethylene receptor homolog gene from rice. Sci China Series C-Life Sci, 2003, 46: 370–278 10.1360/02yc0119, 1:CAS:528:DC%2BD3sXmvVWktL8%3D

    Article  CAS  Google Scholar 

  26. Cvrckova F, Zarsky V. NtRopl, a tobacco cDNA encoding a Rho subfamily GTPase expressed in pollen. Plant Physiol, 1999, 120: 634–634

    Google Scholar 

  27. Zhang J S, Zhou J M, Zhang C, et al. Differential gene expression in a salt-tolerance rice mutant and its parental variety. Sci China Series C-Life Sci, 1996, 39: 310–319

    Google Scholar 

  28. Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743 10069079, 10.1046/j.1365-313x.1998.00343.x, 1:STN:280:DyaK1M7mvVagsQ%3D%3D

    Article  CAS  Google Scholar 

  29. Nag S, Saha K, Choudhun M A. A rapid and sensitive assay method for measuring amine oxidase based on hydrogen peroxide-titanium complex formation. Plant Sci, 2000, 157: 157–163 10960728, 10.1016/S0168-9452(00)00281-8, 1:CAS:528:DC%2BD3cXlvV2mtro%3D

    Article  CAS  Google Scholar 

  30. Cao W H, Liu J, He X J, et al. Modulation of ethylene response affects plant salt-stress responses. Plant Pysiol, 2007, 143; 707–719 10.1104/pp.106.094292, 1:CAS:528:DC%2BD2sXhvFWnsb0%3D

    CAS  Google Scholar 

  31. Hassanain H H, Sharma Y K, Moldovan L, et al. Plant Rac proteins induce superoxide production in mammalian cells. Biochem Biophys Res Commu, 2000, 272: 783–788 10.1006/bbrc.2000.2791, 1:CAS:528:DC%2BD3cXktVKks7c%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JinSong Zhang or ShouYi Chen.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2006CB100102) and the High-Tech Program (863 Program) of China (Grant No. 2006AA10Z18201)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Li, Z., Chen, T. et al. Overexpression of a tobacco small G protein gene NtRop1 causes salt sensitivity and hydrogen peroxide production in transgenic plants. SCI CHINA SER C 51, 383–390 (2008). https://doi.org/10.1007/s11427-008-0060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0060-6

Keywords

Navigation