Skip to main content
Log in

Chromosomal localization of silkworm (Bombyx mori) sericin gene 1 and chymotrypsin inhibitor 13 using fluorescence in situ hybridization

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The chromosomal locations of two single-copy genes, Ser-1 and Cl-13, in silkworm (Bombyx mori) were detected at the molecular cytogenetics level by fluorescence in situ hybridization in the study. The results showed that Ser-1 is located near the distal end of the 11th linkage group, relatively at the 12.5±1.4 position in pachytene; and that Cl-13 has been mapped near the distal end of the 2nd linkage group, relatively at the 8.2±1.2 position in pachytene. Furthermore, their location model map-FISH map on silkworm chromosome was drawn. The FISH technique and its application to silkworm are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takei F, Kikuchi Y, Kikachi A, et al. Further evidence for importance combination of silk fibroin in its efficient secrection from the posterior silk gland cells. J Cell Biol, 1987, 105: 175–180

    Article  PubMed  CAS  Google Scholar 

  2. Gamo T, Inokuchi T, Laufer H. Polypeptides of fibroin and sericin secreted from the different sections of the silk gland in Bombyx mori. Insect Biochem, 1977, 7: 285–295

    Article  CAS  Google Scholar 

  3. Sinohara H. Glycopeptides isolated from sercin of the silkworm, Bombyx mori. Comp Biochem Physiol, 1979, 63B: 87–91

    CAS  Google Scholar 

  4. Ishikawa E, Suzuki Y. Tissue and stage-specific expression of sericin genes in the middle silk gland of Bombyx mori. Develop Growth Differ, 1985, 27: 73–82

    Article  CAS  Google Scholar 

  5. Miichaille J J, Couble P, Prudhomme J C, et al. A single gene produces multiple sericin messenger RNAs in the silk gland of Bombyx mori. Biochimie, 1986, 68: 1165–1173

    Article  Google Scholar 

  6. Hamada Y, Yamashita O, Suzuki Y. Haemolymph control of sericin gene expression studied by organ transplantation. Cell Diff, 1987, 20:65–76

    Article  CAS  Google Scholar 

  7. Okamoto H, Ishikawa E, Suzuki Y. Structural analysis of sericin genes: Homologies with fibrobin gene in the 5′ flanking nucleotide sequences. J Biol Chem, 1982, 257: 15192–15199

    PubMed  CAS  Google Scholar 

  8. Garel A A. Structure and orgnization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced from the sequence of the Ser1 B cDNA. Insect Biochem Mol Biol, 1997, 27(5): 469–477

    Article  PubMed  CAS  Google Scholar 

  9. Doira H. Linkage map of Bombyx mori: Status quo in 1983. Sericologia, 1983, 23: 245–269

    Google Scholar 

  10. Jiang Y H, Xu M K, Chen Y Y. Progress of proteinase inhibitor of insect (Bombyx mori). Acta Sericol Sin, 2000, 26(Supp1): 92–97

    Google Scholar 

  11. Ejuchi M, Shomoto K. Comparsion of five chymotrypsin inhibitors from the sikworm haemolymph. Comp Biochem Physiol,1984, 78B: 723–727

    Google Scholar 

  12. Fujii H, Aratake H, Doira H, et al. Genetic analysis of chymotrypsin inhibitors in the haemolymph of Bombyx mori. J Seric Sci Jpn, 1996a, 65(5): 334–341

    CAS  Google Scholar 

  13. Fujii H, Aratake H, Doira H. Genetic analysis of chymotrypsin inhibitors-3 and 4 in the silkworm, Bombyx mori. J Seric Sci Jpn,1996b, 65(5): 385–389

    CAS  Google Scholar 

  14. Fujii H, Aratake H, Deng L R, et al. Purification and characterization of a novel chymotrypsin inhibitor controlled by the chymotrypsin inhibitorA (Ict-A) gene from the hemolymph of the silkworm, Bombyx mori. Comp Biochem Physiol,1989, 94: 145–155

    Google Scholar 

  15. Song F Z, Zhang P B, Yi F P, et al. Study on fibroin heavy chain of the Silkworm Bombyx moriby fluorescence in situ hybridization (FISH). Sci China Ser C-Life Sci, 2002, 45(6): 663–668

    Article  CAS  Google Scholar 

  16. Ausubel F M, John Wiley & Sons, et al. Short Protocols in Molecular Biology. Yan Z Y, Wang H L, translated. Beijing: Science Press, 1998. 23

    Google Scholar 

  17. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning—A Laboratory Manual. Jin D Y, Li M F, translated. 2nd ed. Beijing: Science Press, 1992. 49–60

    Google Scholar 

  18. Jiang J, Hulbert S H, Gill B S, et al. Interphase fluorescence in situ mapping: a physical mapping strategy for plant species with large complex genomes. Mol Gen Genet, 1996, 252: 497–502

    Article  PubMed  CAS  Google Scholar 

  19. Okazaki S, Tsuchida K, Maekawa H, et al. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm, Bombyx mori and other insects. Mol Cell Biol, 1993, 13(3): 1424–1432

    PubMed  CAS  Google Scholar 

  20. Teru O, Kazuhiro O, Kozo T, et al. A defective non-LTR retrotransposon is dispersed throughout the genome of the silkworm, Bombyx mori. Chromosoma, 1994, 103(5): 311–323

    Article  Google Scholar 

  21. Sahara K, Marce F, Traut W. TTAGG telomeric reapeats in chromosomes of some insects and other arthropods. Chromosome Res, 1999, 7: 449–460

    Article  PubMed  CAS  Google Scholar 

  22. Tsuchida K, Miyajima N, Kenwrick S, et al. Determining gene location on chromosome of Bombyx mori using fluroscence in situ hybridization (FISH). Appl Entomol Zool, 1995, 30: 225–230

    Google Scholar 

  23. Tsuchida K, Banno Y, Hashido K. Methods for fluorescence in situ hybridization using oocyte and spermatocyte chromosomes of Bombyx mori. J Seric Sci Jpn, 1997, 66(4): 233–241

    CAS  Google Scholar 

  24. Banno Y, Sakaida K, Nakamura T, et al. Reassessment of mapping the E homeotic complex of Bombyx mori by linkage analysis and in situ hybridization with an Antennapedia clone as a probe. J Seric Sci Jpn, 1997, 66(3): 151–155

    Google Scholar 

  25. Niimi T, Sahara K, Oshima H, et al. Molecular cloning and chromosomal localization of the Bombyx sex-lethal gene. Genome, 2006, 49: 263–268

    Article  PubMed  CAS  Google Scholar 

  26. Yoshido A, Bando H, Yasukochi Y, et al. The Bombyx mori karyotype and the assignment of linkage groups. Genetics, 2005, 170: 675–685

    Article  PubMed  CAS  Google Scholar 

  27. Sahara K, Yoshido A, Kawamura N, et al. W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma, 2003, 112: 48–55

    Article  PubMed  CAS  Google Scholar 

  28. Zeng J B. Several methods of preparation chromosome species of silkworm (Bombyx mori). Acta Serico-l Sin, 1980, 6(1): 60–61

    Google Scholar 

  29. Zhong X B, de Jong J H, Zabel P. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res, 1996, 4:24–28

    Article  PubMed  CAS  Google Scholar 

  30. Zhong X B, Fransz P F, Eden J W, et al. High resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescence in situ hybridization. Plant Mol Biol Report, 1996, 14(3): 232–242

    Article  CAS  Google Scholar 

  31. Heng H H Q, Squire J, Tsui L-C. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci USA, 1992: 9509–9513

  32. Michalet X, Ekong R, Fougerouses F, et al. Dynamic molecular combing: Stretching the whole human genome for high resolution studies. Science, 1997, 277: 1518–1523

    Article  PubMed  CAS  Google Scholar 

  33. Jackson S, Wang M. L, Goodman H, et al. Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome, 1998, 41:556–572

    Article  Google Scholar 

  34. Li N, Wu C X. Assignment of the porcine myoglobin gene to chromosome 5p15∼pter by fluorescent in situ hybridization. Acta Genet Sin, 1998, 25(2): 120–122

    CAS  Google Scholar 

  35. Edge R, Wang R F, Xia L W. Synthesis, labeling and application of nucleic acid probe. Beijing: Science Press, 1998. 334–350

    Google Scholar 

  36. Li L J, Song Y C, Yan H M, et al. The physical location of gene Ht1 (Helminthoosporium turcicum resistance 1) in maize (Zea mays L.). Hereditas, 1998, 129: 101–106

    Article  CAS  Google Scholar 

  37. Gustafson J P, Dille J E. The chromosome location of Oryza sativa recombination linkage group. Proc Natl Acad Sci USA, 1992, 89:8646–8650

    Article  PubMed  CAS  Google Scholar 

  38. Song Y C, Gustafson J P. The physical location of fourteen RFLP markers in rice (Oryza sativa L.). Theor Appl Genet, 1995, 90:113–119

    CAS  Google Scholar 

  39. Sherman J D, Stack S M. Physical map of crossover frequency on synaptonemal complexes from tomato primary microsporocytes. Tomato Genet Cooperat Rep, 1995, 45: 42–43

    Google Scholar 

  40. Goldsmith M R. Genetics of the silkworm: Revisiting an ancient model system. In: Goodsmith M R, Wilkins A S, eds. Molecular model Systems in the Lepidoptera. New York: Cambridge Univ Press, 1995: 21–76

    Google Scholar 

  41. Song F Z, Xiang Z H. Progress of chromosome of spun silkworm insects. Newslett Sericultural Sci, 1996a, 16(2): 40–43

    Google Scholar 

  42. Song F Z, Xiang Z H. Progress of chromosome of spun silkworm insects. Newslett Sericultural Sci, 1996b, 16(3): 28–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song FangZhou.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 39730730 and 39770574), Foundation for University Leading Teacher by the Ministry of Education of China (Grant No.GG-230-10625-1065), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, The Ministry of Education of China, and the Science Research Foundation of Ministry of Education of Japan (Grant No. 09045069)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, F., Chang, P., Zhang, P. et al. Chromosomal localization of silkworm (Bombyx mori) sericin gene 1 and chymotrypsin inhibitor 13 using fluorescence in situ hybridization. Sci. China Ser. C-Life Sci. 51, 133–139 (2008). https://doi.org/10.1007/s11427-008-0025-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0025-9

Keywords

Navigation