Skip to main content
Log in

Expression and intercellular trafficking of the VP22 protein of CVI988/Rispens vaccine strain of Marek’s disease virus

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The viral protein 22 (VP22) in the tegument of Marek’s disease virus serotype 1 (MDV-1) plays an important role in cell-to-cell spread and viral propagation. Antiserum against the carboxyl terminus of VP22 was prepared by immunizing mice with recombinant VP22 expressed in E. coli, and used to investigate its expression in chicken embryo fibroblast (CEF) cells infected with different MDV-1 strains. At an infection dose of PFU=50, intercellular trafficking of the VP22 into the nuclei of the surrounding receipt cells was detected as early as 3 hours post infection. By 6 hours after infection (before viral plague formation), the protein was detected in the whole nuclei of the recipient cells with no difference among MDV-1 strains CVI988/Rispens, GA and RB1B. Intra-nuclear accumulation of the VP22 protein was further increased when the viral plagues started to form. These results indicate that, albeit the existence of the 201TKSERT206 deletion, the VP22 of the CVI988/Rispens vaccine strain has also intercelular-trafficking function, which might serve as a potential alternative delivering protein instead of virulent strains VP22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanagida N, Yoshida S, Nazerian K, et al. Nucleotide and predicted amino acid sequences of Marek’s disease virus homologues of herpes simplex virus major tegument proteins. J Gen Virol, 1993, 74(9): 1837–1845

    PubMed  CAS  Google Scholar 

  2. Elliott G D, Meredith D M. The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49. J Gen Virol, 1992, 73(3): 723–726

    Article  PubMed  CAS  Google Scholar 

  3. Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 1997, 88(2): 223–233

    Article  PubMed  CAS  Google Scholar 

  4. Saskia A R, Piter J B, Jennifer L R. Induction of insolubility by herpes simplex virus VP22 precludes intercellular trafficking of N-terminal Apoptin-VP22 fusion proteins. J Mol Med, 2003, 81: 558–565

    Article  CAS  Google Scholar 

  5. Brewis N, Phelan A, Webb J, et al. Evaluation of VP22 spread in tissue culture. J Virol, 2000, 74(2): 1051–1056

    Article  PubMed  CAS  Google Scholar 

  6. Dorange F, Tischer B K, Vautherot J F, et al. Characterization of Marek’s disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispenssable for virus growth. J Virol, 2002, 76(4): 1959–1970

    Article  PubMed  CAS  Google Scholar 

  7. Dorange F, Mehdaoui S, Pichon C, et al. Marek’s disease virus (MDV) homologues of herpes simplex virus type 1 UL49 (VP22) and UL48 (VP16) genes: high-level expression and characterization of MDV-1 VP22 and VP16. J Gen Virol, 2000, 81(9): 2219–2230

    PubMed  CAS  Google Scholar 

  8. Hung C F, He L, Juang J, et al. Improving DNA vaccine potency by linking Marek’s disease virus type 1 VP22 to an antigen. J Virol, 2002, 76(6): 2676–2682

    Article  PubMed  CAS  Google Scholar 

  9. Chen H J, Qin A J, Ding C, et al. Difference in the VP22 gene between oncogenic and attenuated strains of Marek’s disease virus serotype 1. J Yangzhou Univ. (Agri & Life Sci edition) (in Chinese), 2003, 24(4): 8–11

    Google Scholar 

  10. Chen H J, Qin A J, Song C P, et al. Highly soluble expression of carboxyl terminus of MDV-1 VP22 in E coli. Virol Sinica (in Chinese), 2006, 21(2): 284–286

    CAS  Google Scholar 

  11. El-Andaloussi S, Holm T, Langel U. Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des, 2005, 11(28): 3597–3611

    Article  PubMed  CAS  Google Scholar 

  12. Elliott G, O’Hare P. Intercellular trafficking of VP22-GFP fusion proteins. Gene Ther, 1999, 6(1): 149–151

    Article  PubMed  CAS  Google Scholar 

  13. Normand N, van Leeuwen H, O’Hare P. Particle formation by a conserved domain of the herpes simplex virus protein VP22 facilitating protein and nucleic acid delivery. J Biol Chem, 2001, 276(18): 15042–15050

    Article  PubMed  CAS  Google Scholar 

  14. Zheng C, Babiuk L A, van Drunen Littel-van den Hurk S. Bovine herpesvirus 1 VP22 enhances the efficacy of a DNA vaccine in cattle. J Virol, 2005, 79(3): 1948–1953

    Article  PubMed  CAS  Google Scholar 

  15. O’Donnell L A, Clemmer J A. Marek’s disease virus VP22: sub-cellular localization and characterization of carboxyl terminal deletion Mutations. Virology, 2002, 292(2): 235–240

    Article  PubMed  CAS  Google Scholar 

  16. Brian J G, Gina L C, John E T, et al. Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization. Virology, 2004, 330: 74–81

    Article  CAS  Google Scholar 

  17. del Rio T, Werner H C, Enquist L W. The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents. J Virol, 2002, 76(2): 774–782

    Article  PubMed  Google Scholar 

  18. Elliott G, O’Reilly D, O’Hare P. Phosphorylation of the herpes simplex virus type 1 tegument protein VP22. Virology, 1996, 226(1): 140–145

    Article  PubMed  CAS  Google Scholar 

  19. Elliott G, O’Hare P. Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules. J Virol, 1998, 72(8): 6448–6455

    PubMed  CAS  Google Scholar 

  20. Elliott G, O’Reilly D, O’Hare P. Identification of phosphorylation sites within the herpes simplex virus tegument protein VP22. J Virol, 1999, 73(7): 6203–6206

    PubMed  CAS  Google Scholar 

  21. Pomeranz L E, Blaho J A. Modified VP22 Localizes to the Cell Nucleus during Synchronized Herpes Simplex Virus Type 1 Infection. J Virol, 1999, 73(8): 6769–6781

    PubMed  CAS  Google Scholar 

  22. Morrison E E, Wang Y F, Meredith D M. Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument. J Virol, 1998, 72(9): 7108–7114

    PubMed  CAS  Google Scholar 

  23. Elliott G, Mouzakitis G, O’Hare P. VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. J Virol, 1995, 69(12): 7932–7941

    PubMed  CAS  Google Scholar 

  24. Fuchs W, Klupp B G, Granzow H, et al. Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49. J Virol, 2002, 76(16): 8208–8217

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin AiJian.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30371070)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Song, C., Qin, A. et al. Expression and intercellular trafficking of the VP22 protein of CVI988/Rispens vaccine strain of Marek’s disease virus. SCI CHINA SER C 50, 75–79 (2007). https://doi.org/10.1007/s11427-007-2038-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-2038-1

Keywords

Navigation