Skip to main content
Log in

Expression of the human fast-twitch skeletal muscle troponin I cDNA in a human ovarian carcinoma suppresses tumor growth

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

To explore the efficiency and mechanism of ovarian carcinoma gene therapy with the human fast-twitch skeletal muscle troponin I gene (Tnl-fast), Tnl-fast cDNA was transferred into human ovarian adenocarcinoma cell-line SK-OV-3. In vitro, the cell growth and cell cycle of Tnl-fast-, vector-, and mock-transfected cells were determined by MTT and flow cytometry assay, respectively. The conditioned media of Tnl-fast-, vector-, and mock-transfected SK-OV-3 cells were collected, and the cell proliferation inhibiting rates of human umbilical cord venous endothelial cells (HUVECs) by the three conditioned media were assayed. All the three cell lines were implanted into node mice, and the tumor growth, cell apoptosis, angiogenesis, and expression of Tnl-fast were observed or analyzed, respectively. In vitro, expression of Tnl-fast protein had no inhibiting effect on the growth of the dominant and stable transfectant cells, but endothelium, when compared with vector-transfected cells and nontransfected parental SK-OV-3 cells. Implantation of stable clone expressing Tnl-fast in the female BALB/c nude mice inhibits primary tumor growth by an average of 73%. The nude mice grafts expressing Tnl-fast exhibit a significant decrease of microvascular density, a higher rate of tumor cells apoptosis and a comparable proliferation rate as control. Our study, to our knowledge, shows the slowed down growth of the primary ovarian carcinoma, suggested that grafts were self-inhibitory by halting angiogenesis. Our data might also provide a novel useful strategy for cancer therapy by antiangiogenic gene therapy with a specific angiogenesis inhibitor Tnl-fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996, 86(3): 353–364

    Article  PubMed  CAS  Google Scholar 

  2. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med, 1995, 333(26): 1757–1763

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1995, 1(1): 27–31

    Article  PubMed  CAS  Google Scholar 

  4. O’Reilly M S, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 1994, 79(2): 315–328

    Article  PubMed  CAS  Google Scholar 

  5. Kandel J, Bossy-Wetzel E, Radvanyi F, et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell, 1991, 66(6): 1095–1104

    Article  PubMed  CAS  Google Scholar 

  6. Ferrara N, Houck L, Jakeman L, et al. Molecular and biological properties of the vascular endothelial cell growth factor family of proteins. Endocr Rev, 1992, 13(1): 18–32

    Article  PubMed  CAS  Google Scholar 

  7. Dvorak H F, Brown L F, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol, 1995, 146(5): 1029–1039

    PubMed  CAS  Google Scholar 

  8. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci, 1997, 22(7): 251–256

    Article  PubMed  CAS  Google Scholar 

  9. Rastinejad F, Polverini P, Bouck N P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell, 1989, 56(3): 345–355

    Article  PubMed  CAS  Google Scholar 

  10. Sharpe R J, Byer H R, Scott C F, et al. Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J Natl Cancer Inst, 1990, 82(10): 848–853

    Article  PubMed  CAS  Google Scholar 

  11. Brooks P C, Montgomery A M, Rosenfeld M, et al. Integrin v3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 1994, 79(7): 1157–1164

    Article  PubMed  CAS  Google Scholar 

  12. Moses M A, Wiederschain D, Wu I, et al. Troponin I is present in human cartilage and inhibits angiogenesis. Proc Natl Acad Sci USA, 1999, 96(6): 2645–2650

    Article  PubMed  CAS  Google Scholar 

  13. Feldman L, Rouleau C. Troponin I inhibits capillary endothelial cell proliferation by interaction with the cell’s bFGF receptor. Microvasc Res, 2002, 63(1): 41–49

    Article  PubMed  CAS  Google Scholar 

  14. Moses M A, Klagsbrun M, Shing Y. The role of growth factors in vascular cell development and differentiation. Int Rev Cytol, 1995, 161: 1–48

    PubMed  CAS  Google Scholar 

  15. Yamaoka M, Yamamoto T, Masaki T, et al. Inhibition of tumor growth and metastasis of rodent tumors by the angiogenesis inhibitor O-(chloroacetyl-carbamoyl) fumagillol (TNP-470; AGM-1470). Cancer Res, 1993, 53(18): 4262–4267

    PubMed  CAS  Google Scholar 

  16. Chirivi R G, Garofalo A, Crimmin M J, et al. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer, 1994, 58(3): 460–464

    Article  PubMed  CAS  Google Scholar 

  17. Kern B E, Balcom J H, Antoniu B A, et al. Troponin I peptide (Glu94-Leu123), a cartilage-derived angiogenesis inhibitor: in vitro and in vivo effects on human endothelial cells and on pancreatic cancer. J Gastrointest Surg, 2003, 7(8): 961–968

    Article  PubMed  Google Scholar 

  18. Zhu L, Perez-Alvarado G, Wade R. Sequencing of a cDNA encoding the human fast-twitch skeletal muscle isoform of troponin I. Biochim Biophys Acta, 1994, 1217(3): 338–340

    PubMed  CAS  Google Scholar 

  19. Wei Y, Zhao X, Kariya Y, et al. Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cell. Cancer Immunol Immuother, 1995, 40(2): 73–78

    CAS  Google Scholar 

  20. Dameron K M, Volpert O V, Tainsky M A, et al. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 1994, 265(5178): 1582–1584

    Article  PubMed  CAS  Google Scholar 

  21. Auerbach W, Auerbach R. Angiogenesis inhibition: A review. Pharmacol Ther, 1994, 63(3): 265–311

    Article  PubMed  CAS  Google Scholar 

  22. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-induced angiogenesis. Nature, 1992, 359(6398): 843–845

    Article  PubMed  CAS  Google Scholar 

  23. Holmgren L, O’Reilly M S, Folkman J. Dormancy of metastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med, 1995, 1(2): 149–153

    Article  PubMed  CAS  Google Scholar 

  24. Santin A D, Hermonat P L, Ravaggi A, et al. Secretion of vascular endothelial growth factor in ovarian cancer. Eur J Gynaecol Oncol, 1999, 20(3): 177–181

    PubMed  CAS  Google Scholar 

  25. Cao Y, O’Reilly M S, Marshall B, et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest, 1998, 101(5): 1055–1063

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei YuQuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, G., Yang, L., Wei, Y. et al. Expression of the human fast-twitch skeletal muscle troponin I cDNA in a human ovarian carcinoma suppresses tumor growth. SCI CHINA SER C 50, 93–100 (2007). https://doi.org/10.1007/s11427-007-2032-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-2032-7

Keywords

Navigation