Skip to main content
Log in

Evaluation of strategy for analyzing mouse liver plasma membrane proteome

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Plasma membrane (PM) proteome is one of the major subproteomes present in the cell, and is very important in liver function. In the present work, C57 mouse liver PM was purified by density-gradient centrifugation. The purified PM was verified by electron microscope analysis and Western blotting. The results showed that the PM was enriched by more than 20-fold and the contamination of mitochondria was reduced by 2-fold compared with the homogenization fraction. Proteins were separated by 2DE and 1DE, trypsin-digested and submitted to ESI-Q-TOF and MALDI-TOF-TOF mass spectrometry or directly digested in solution and analyzed by LC-ESI ion trap mass spectrometry. In all, 547 non-redundant mouse liver PM proteins were identified, of which 34% contributed to plasma membrane or plasma membrane-related proteins. This study optimized and evaluated the HLPP plasma membrane proteome analysis method and made a systematic analysis on PM proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PM:

Plasma membrane

2DE:

two-dimensional electrophoresis

ESIQ-TOF:

electrospray ionization-quadropole-time of flight mass spectrometry

MALDI-TOF:

matrix-assisted laser-desorption/ionization time of flight

LC-MS/MS:

liquid chromatography coupled with tandem mass spectrometry

References

  1. Jia H, Louet S. China pushes liver proteomics. Nat Biotechnol, 2004, 22(2): 136

    Article  PubMed  CAS  Google Scholar 

  2. Cyranoski D. China takes centre stage for liver proteome. Nature, 2003, 425(6957): 441

    PubMed  CAS  Google Scholar 

  3. Service R F. Proteomics: Public projects gear up to chart the protein landscape. Science, 2003, 302(5649): 1316–1318

    Article  PubMed  CAS  Google Scholar 

  4. Hopkins A L, Groom C R. The druggable genome. Nat Rev Drug Discov, 2002, 1(9): 727–730

    Article  PubMed  CAS  Google Scholar 

  5. Durr E, Yu J, Krasinska K M, et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol, 2004, 22(8): 985–992

    Article  PubMed  CAS  Google Scholar 

  6. Oh P, Li Y, Yu J, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature, 2004, 429(6992): 629–635

    Article  PubMed  CAS  Google Scholar 

  7. Adam P J, Boyd R, Tyson K L, et al. Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. J Biol Chem, 2003, 278(8): 6482–6489

    Article  PubMed  CAS  Google Scholar 

  8. Jang J H, Hanash S. Profiling of the cell surface proteome. Proteomics, 2003, 3(10): 1947–1954

    Article  PubMed  CAS  Google Scholar 

  9. Fleischer S, Kervina M. Subcellular fractionation of rat liver. Methods Enzymol, 1974, 31(Pt A): 6–41

    Article  PubMed  CAS  Google Scholar 

  10. Zhang L, Xie J, Wang X, et al. Proteomic analysis of mouse liver plasma membrane: Use of differential extraction to enrich hydrophobic membrane proteins. Proteomics, 2005, 5(17): 4510–4524

    Article  PubMed  CAS  Google Scholar 

  11. Huang L, Li B, Luo C, et al. Proteome comparative analysis of gynogenetic haploid and diploid embryos of goldfish (Carassius auratus). Proteomics, 2004, 4(1): 235–243

    Article  PubMed  CAS  Google Scholar 

  12. Gobom J, Schuerenberg M, Mueller M, et al. Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation: A protocol for MALDI-MS peptide analysis in proteomics. Anal Chem, 2001, 73(3): 434–438

    Article  PubMed  CAS  Google Scholar 

  13. Zhang L, Xie J, Wang X, et al. Proteomic analysis of mouse liver plasma membrane: Use of differential extraction to enrich hydrophobic membrane proteins. Proteomics, 2005, 5(17): 4510–4524

    Article  PubMed  CAS  Google Scholar 

  14. Jin W H, Dai J, Li S J, et al. Human plasma proteome analysis by multidimensional chromatography prefractionation and linear ion trap mass spectrometry identification. J Proteome Res, 2005, 4(2): 613–619

    Article  PubMed  CAS  Google Scholar 

  15. Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 157(1): 105–132

    Article  PubMed  CAS  Google Scholar 

  16. Ashburner M, Ball C A, Blake J A, et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25(1): 25–29

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol, 2001, 305(3): 567–580

    Article  PubMed  CAS  Google Scholar 

  18. Link A J, Eng J, Schieltz D M, et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol, 1999, 17(7): 676–682

    Article  PubMed  CAS  Google Scholar 

  19. Peng J, Elias J E, Thoreen C C, et al. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LCMS/MS) for large-scale protein analysis: The yeast proteome. J Proteome Res, 2003, 2(1): 43–50

    Article  PubMed  CAS  Google Scholar 

  20. Fountoulakis M, Suter L. Proteomic analysis of the rat liver. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 782(1–2): 197–218

    Article  PubMed  CAS  Google Scholar 

  21. Fountoulakis M, Takacs B. Effect of strong detergents and chaotropes on the detection of proteins in two-dimensional gels. Electrophoresis, 2001, 22(9): 1593–1602

    Article  PubMed  CAS  Google Scholar 

  22. Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: un amour impossible? Electrophoresis, 2000, 21(6): 1054–1070

    Article  PubMed  CAS  Google Scholar 

  23. Molloy M P, Herbert B R, Walsh B J, et al. Extraction of membrane proteins by differential solubilization for separation using twodimensional gel electrophoresis. Electrophoresis, 1998, 19(5): 837–844

    Article  PubMed  CAS  Google Scholar 

  24. Edgar P F, Douglas J E, Cooper G J, et al. Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry, 2000, 5(1): 85–90

    Article  PubMed  CAS  Google Scholar 

  25. Negrutskii B S, El’skaya A V. Eukaryotic translation elongation factor 1 alpha: Structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol, 1998, 60: 47–78

    Article  PubMed  CAS  Google Scholar 

  26. Honscha W, Ottallah M, Kistner A, et al. A membrane-bound form of protein disulfide isomerase (PDI) and the hepatic uptake of organic anions. Biochim Biophys Acta, 1993, 1153(2): 175–183

    Article  PubMed  CAS  Google Scholar 

  27. Watson K, Gooderham N J, Davies D S, et al. Nucleosomes bind to cell surface proteoglycans. J Biol Chem, 1999, 274(31): 21707–21713

    Article  PubMed  CAS  Google Scholar 

  28. Watson K, Edwards R J, Shaunak S, et al. Extra-nuclear location of histones in activated human peripheral blood lymphocytes and cultured T-cells. Biochem Pharmacol, 1995, 50(3): 299–309

    Article  PubMed  CAS  Google Scholar 

  29. Khan I U, Wallin R, Gupta R S, et al. Protein kinase A-catalyzed phosphorylation of heat shock protein 60 chaperone regulates its attachment to histone 2B in the T lymphocyte plasma membrane. Proc Natl Acad Sci USA, 1998, 95(18): 10425–10430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Hariton-Gazal E, Rosenbluh J, Graessmann A, et al. Direct translocation of histone molecules across cell membranes. J Cell Sci, 2003, 116(Pt 22): 4577–4586

    Article  PubMed  CAS  Google Scholar 

  31. Dunkley T P, Watson R, Griffin J L, et al. Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics, 2004, 3(11): 1128–1134

    Article  PubMed  CAS  Google Scholar 

  32. He J T, Liu Y S, He S Z, et al. Comparison of two-dimensional gel electrophoresis based and shotgun strategies in the study of plasma membrane proteome. Proteomics—Clinical Applications, 2007, 1(2): 239–2247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang SongPing.

Additional information

These authors contributed equally to this work

Supported by China National Haman Liver Proteome Project (Grant No. 2004 BA711A18), and Hunan Provincial Education Department and Hunan Science and Technology Project (Grant Nos. 05FJ2002 and 05FJ4018)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Zhang, L., Li, X. et al. Evaluation of strategy for analyzing mouse liver plasma membrane proteome. SCI CHINA SER C 50, 731–738 (2007). https://doi.org/10.1007/s11427-007-0103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0103-4

Keywords

Navigation