Skip to main content
Log in

The flhDC gene affects motility and biofilm formation in Yersinia pseudotuberculosis

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The flagella master regulatory gene flhDC of Yersinia pseudotuberculosis serotype III (YPIII) was mutated by deleting the middle region and replaced by a tetracycline resistant gene, and the subsequent mutant strain named YPIIIΔflhDC was obtained. Swimming assay showed that the swimming motility of the mutant strain was completely abolished. The promoter region of the flagella second-class regulatory gene fliA was fused with the lux box, and was conjugated with the mutant and the parent strains respectively for the first cross. LUCY assay result demonstrated that flhDC regulated the expression of fliA in YPIII as reported in E. coli. Biofilm formation of the mutant strain on abiotic and biotic surfaces was observed and quantified. The results showed that mutation of flhDC decreased biofilm formation on both abiotic and biotic surfaces, and abated the infection on Caenorhabdtis elegans. Our results suggest that mutation of the flagella master regulatory gene flhDC not only abolished the swimming motility, but also affected biofilm formation of YPIII on different surfaces. The new function of flhDC identified in this study provides a novel viewpoint for the control of bacterial biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S, Fleming R T, Westbrook E M, et al. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J Mol Biol, 2006, 355: 798–808, 16337229, 10.1016/j.jmb.2005.11.020, 1:CAS:528:DC%2BD2MXhtlCrt73O

    Article  PubMed  CAS  Google Scholar 

  2. Macnab R M. Genetics and biogenesis of bacterial flagella. Annu Rev Genet, 1992, 26: 131–158, 1482109, 10.1146/annurev.ge.26.120192.001023, 1:CAS:528:DyaK3sXkt1Wgsb8%3D

    Article  PubMed  CAS  Google Scholar 

  3. Atkinson S, Chang C Y, Sockett R E, et al. Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol, 2006, 188: 1451–1461, 16452428, 10.1128/JB.188.4.1451-1461.2006, 1:CAS:528:DC%2BD28Xhs1Gls70%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Prusß M, Liu X, Hendrickson W, et al. FlhD/flhC-regulated promoters analyzed by gene array and lacZ gene fusions. FEMS Microbiol Lett, 2001, 197: 91–97, 10.1016/S0378-1097(01)00092-1

    Article  Google Scholar 

  5. Prusß M, Campbell J W, Van Dyk T K, et al. FlhD/FlhC is a regulator of anaerobic respiration and the Entner-Doudoroff pathway through induction of the methyl-accepting chemotaxis protein Aer. J Bacteriol, 2003, 185: 534–543, 10.1128/JB.185.2.534-543.2003, 1:CAS:528:DC%2BD3sXksl2ksg%3D%3D

    Article  Google Scholar 

  6. Bleves S, Marenne M N, Detry G, et al. Up-regulation of the Yersinia enterocolitica Yop regulon by deletion of the flagellum master operon flhDC. J Bacteriol, 2002, 184: 3214–3223, 12029037, 10.1128/JB.184.12.3214-3223.2002, 1:CAS:528:DC%2BD38XksV2ht74%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Schmiel D H, Young G M, Miller V L. The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol, 2000,182: 2314–2320, 10735878, 10.1128/JB.182.8.2314-2320.2000, 1:CAS:528:DC%2BD3cXitlGgu7w%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Givskov M, Eberl L, Christiansen M, et al. Induction of phospholipase and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon FlhD. Mol Microbiol, 1995, 15: 445–454, 7783615, 10.1111/j.1365-2958.1995.tb02258.x, 1:CAS:528:DyaK2MXjvFejtrg%3D

    Article  PubMed  CAS  Google Scholar 

  9. Givaudan A, Lanois A. FlhDC, the flagellar master operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. J Bacteriol, 2000, 182: 107–115, 10613869, 1:CAS:528:DyaK1MXotFyjtL8%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Garbom S, Forsberg A K, Wolf-Watz H, et al. Identification of novel virulence-associated genes via genome analysis of hypothetical genes. Infect Immun, 2004, 72: 1333–1340., 14977936, 10.1128/IAI.72.3.1333-1340.2004, 1:CAS:528:DC%2BD2cXhvVChtLY%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. McClean K H, Winson M K, Fish L, et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 1997, 143: 3703–3711, 9421896, 1:CAS:528:DyaK1cXnslOj, 10.1099/00221287-143-12-3703

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Dai Y, Zhang Y, et al. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China Ser C-Life Sci, 2007, 50: 385–391, 10.1007/s11427-007-0044-y, 1:CAS:528:DC%2BD2sXosF2hs78%3D

    Article  CAS  Google Scholar 

  13. Tan L, Darby C. A movable surface: Formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J Bacteriol, 2004, 186: 5087–5092, 15262945, 10.1128/JB.186.15.5087-5092.2004, 1:CAS:528:DC%2BD2cXmtFeqtrg%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Atkinson S, Throup J P, Stewart G S, et al. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol, 1999, 33: 1267–1277, 10510240, 10.1046/j.1365-2958.1999.01578.x, 1:CAS:528:DyaK1MXmtlajsLw%3D

    Article  PubMed  CAS  Google Scholar 

  15. Joshua G W P, Karlyshev A V, Smith M P, et al. A Caenorhabditis elegans model of Yersinia infection: Biofilm formation on a biotic surface. Microbiology, 2003, 149: 3221–3229, 14600234, 10.1099/mic.0.26475-0, 1:CAS:528:DC%2BD3sXpsFagtLw%3D

    Article  PubMed  CAS  Google Scholar 

  16. Clutterbuck A L, Woods E J, Knottenbelt D C, et al. Biofilms and their relevance to veterinary medicine. Vet Microbiol, 2007, 121: 1–17, 17276630, 10.1016/j.vetmic.2006.12.029, 1:CAS:528:DC%2BD2sXisVCgtbw%3D

    Article  PubMed  CAS  Google Scholar 

  17. Simmons W L, Bolland J R, Daubenspeck J M, et al. A stochastic mechanism for biofilm formation by Mycoplasma pulmonis. J Bacteriol, 2007, 189: 1905–1913, 17142389, 10.1128/JB.01512-06, 1:CAS:528:DC%2BD2sXitl2hs7w%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Spoering A L, Gilmore M S. Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol, 2006, 9: 133–137, 16529982, 10.1016/j.mib.2006.02.004, 1:CAS:528:DC%2BD28XjtFagtLg%3D

    Article  PubMed  CAS  Google Scholar 

  19. Jefferson K K. What drives bacteria to produce a biofilm? FEMS Microbiol Lett, 2004, 236: 163–173, 15251193, 1:CAS:528:DC%2BD2cXls1ajtrc%3D

    Article  PubMed  CAS  Google Scholar 

  20. Pratt L A, Kotler R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol, 1998, 30: 285–293, 9791174, 10.1046/j.1365-2958.1998.01061.x, 1:CAS:528:DyaK1cXntFOrtrw%3D

    Article  PubMed  CAS  Google Scholar 

  21. O’Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol, 1998, 30: 295–304, 9791175, 10.1046/j.1365-2958.1998.01062.x, 1:CAS:528:DyaK1cXntFOrtr0%3D

    Article  PubMed  Google Scholar 

  22. Kalmokoff M, Lanthier P, Tremblay T L, et al. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol, 2006, 188: 4312–4320, 16740937, 10.1128/JB.01975-05, 1:CAS:528:DC%2BD28XmtV2hu74%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Lauriano C M, Ghosh C, Correa N E, et al. The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J Bacteriol, 2004,186: 4864–4874, 15262923, 10.1128/JB.186.15.4864-4874.2004, 1:CAS:528:DC%2BD2cXmtFeqsLo%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Klausen M, Heydorn A, Lambertsen L, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 2003, 48: 1511–1524, 12791135, 10.1046/j.1365-2958.2003.03525.x, 1:CAS:528:DC%2BD3sXkvFCmtLg%3D

    Article  PubMed  CAS  Google Scholar 

  25. Huber B, Riedel K, Hentzer M, et al. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology, 2001, 147: 2517–2528, 11535791, 1:CAS:528:DC%2BD3MXnt1Cgs7Y%3D

    Article  PubMed  CAS  Google Scholar 

  26. Suntharalingam P, Cvitkovitch D G. Quorum sensing in Streptococcal biofilm formation. Trends Microbiol, 2005, 13: 3–6, 15639624, 10.1016/j.tim.2004.11.009, 1:CAS:528:DC%2BD2MXhvF2nsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  27. Harris S J, Shih Y L, Bentley S D, et al. The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants. Mol Microbiol, 1998, 28: 705–717, 9643539, 10.1046/j.1365-2958.1998.00825.x, 1:CAS:528:DyaK1cXjsFSgsrw%3D

    Article  PubMed  CAS  Google Scholar 

  28. Sperandio V, Torres A G, Kaper J B. Quorum sensing Escherichia coli regulators B and C (QseBC): A novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol, 2002, 43: 809–821, 11929534, 10.1046/j.1365-2958.2002.02803.x, 1:CAS:528:DC%2BD38XitlWgsrw%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen ShiYun.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30570020)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ding, L., Hu, Y. et al. The flhDC gene affects motility and biofilm formation in Yersinia pseudotuberculosis. SCI CHINA SER C 50, 814–821 (2007). https://doi.org/10.1007/s11427-007-0101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0101-6

Keywords

Navigation