Skip to main content
Log in

Evolution of cd59 gene in mammals

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The CD59-coding sequences were obtained from 5 mammals by PCR and BLAST, and combined with the available sequences in GenBank, the nucleotide substitution rates of mammalian cd59 were calculated. Results of synonymous and nonsynonymous substitution rates revealed that cd59 experienced negative selection in mammals overall. Four sites experiencing positive selection were found by using “site-specific” model in PAML software. These sites were distributed on the molecular surface, of which 2 sites located in the key functional domain. Furthermore, “branch-site-specific” model detected 1 positive site in cd59a and cd59b lineages which underwent accelerated evolution caused by positive selection after gene duplication in mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies A, Lachmann P J. Membrane defense against complement lysis: the structure and biological properties of CD59. Immunol Res, 1993, 12: 258–275, 7507156, 1:CAS:528:DyaK2cXitFClsL8%3D, 10.1007/BF02918257

    Article  PubMed  Google Scholar 

  2. Philbrick W M, Palfree R G, Maher S E, et al. The CD59 antigen is a structural homologue of murine Ly-6 antigens but lacks interferon inducibility. Eur J Immunol, 1990, 20: 87–92, 1689664, 10.1002/eji.1830200113, 1:CAS:528:DyaK3cXksFKqtro%3D

    Article  PubMed  Google Scholar 

  3. Petranka J G, Fleenor, D E, Sykes K, et al. Structure of the CD59-encoding gene: Further evidence of a relationship to murine lymphocyte antigen Ly-6 protein. Proc Natl Acad Sci, 1992, 89: 7876–7879, 1381503, 10.1073/pnas.89.17.7876, 1:CAS:528:DyaK3sXks1CgsLg%3D

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fletcher C M, Harrison R A, Lachmann P J, et al. Structure of a soluble, glycosylated form of the human complement regulatory protein CD59. Structure, 1994, 2: 185–199, 7520819, 10.1016/S0969-2126(00)00020-4, 1:CAS:528:DyaK2cXktVKqtrg%3D

    Article  PubMed  Google Scholar 

  5. Albrecht J C, Nicholas J, Cameron K R, et al. Herpesvirus Saimiri has a gene specifying a homologue of the cellular membrane glycoprotein CD59. Virology, 1992, 190: 527–530, 1382344, 10.1016/0042-6822(92)91247-R, 1:CAS:528:DyaK3sXksVemt7w%3D

    Article  PubMed  Google Scholar 

  6. Rother R P, Rollins S A, Fodor W L, et al. Inhibition of complement-mediated cytolysis by the terminal complement inhibitor of Herpesvirus saimiri. J Virol, 1994, 68: 730–737, 7507185, 1:CAS:528:DyaK2cXhtVWntbs%3D

    PubMed  PubMed Central  Google Scholar 

  7. Giddings K S, Zhao J, Sims P J, et al. Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol, 2004, 11: 1173–1178, 15543155, 10.1038/nsmb862, 1:CAS:528:DC%2BD2cXhtVens7jP

    Article  PubMed  Google Scholar 

  8. Donev R M, Cole D S, Sivasankar B, et al. p53 regulates cellular resistance to complement lysis through enhanced expression of CD59. Cancer Res, 2006, 66: 2451–2458, 16489052, 10.1158/0008-5472.CAN-05-3191, 1:CAS:528:DC%2BD28XhsFaltr8%3D

    Article  PubMed  Google Scholar 

  9. Sawyer S L, Wu L I, Emerman M, et al. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci, 2005, 102: 2832–2837, 15689398, 10.1073/pnas.0409853102, 1:CAS:528:DC%2BD2MXitVSksLc%3D

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blok V T, Gelderman K A, Tijsma O H, et al. Cytokines affect resistance of human renal tumor cells to complement-mediated injury. Scand J Immunol, 2003, 57: 591–599, 12791098, 10.1046/j.1365-3083.2003.01265.x, 1:CAS:528:DC%2BD3sXlsVKrsrw%3D

    Article  PubMed  Google Scholar 

  11. Naderi S, Hormann P, Seiter S, et al. CD2-mediated CD59 stimulation in keratinocytes results in secretion of IL-1alpha, IL-6, and GM-CSF: Implications for the interaction of keratinocytes with intraepidermal T lymphocytes. Int J Mol Med, 1999, 3: 609–614, 10341291, 1:CAS:528:DyaK1MXjvVCntLw%3D

    PubMed  Google Scholar 

  12. Bustamante C D, Fledel-Alon A, Williamson S, et al. Natural selection on protein-coding genes in the human genome. Nature, 2005, 437: 1153–1157, 16237444, 10.1038/nature04240, 1:CAS:528:DC%2BD2MXhtFahtLzK

    Article  PubMed  Google Scholar 

  13. Nielsen R, Bustamante C, Clark A G, et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol, 2005, 3: e170, 15869325, 10.1371/journal.pbio.0030170, 1:CAS:528:DC%2BD2MXlsFKmtbc%3D

    Article  PubMed  PubMed Central  Google Scholar 

  14. Voight B F, Kudaravalli S, Wen X, et al. A map of recent positive selection in the human genome. PLoS Biol, 2006, 4: e72, 16494531, 10.1371/journal.pbio.0040072

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang E T, Kodama G, Baldi P, et al. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci, 2006, 103: 135–140, 16371466, 10.1073/pnas.0509691102, 1:CAS:528:DC%2BD28Xms12itg%3D%3D

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fodor W L, Rollins S A, Bianco-Caron S, et al. Primate terminal complement inhibitor homologues of human CD59. Immunogenetics, 1995, 41: 51, 7528724, 10.1007/BF00188435, 1:CAS:528:DyaK2MXktlylu74%3D

    Article  PubMed  Google Scholar 

  17. Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882, 9396791, 10.1093/nar/25.24.4876, 1:CAS:528:DyaK1cXntFyntQ%3D%3D

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kumar S, Gadagkar S R. Disparity Index: A simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics, 2001, 158: 1321–1327, 11454778, 1:CAS:528:DC%2BD3MXmtVKqtL8%3D

    PubMed  PubMed Central  Google Scholar 

  19. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5: 150–163, 15260895, 10.1093/bib/5.2.150, 1:CAS:528:DC%2BD2cXntFGqu7s%3D

    Article  PubMed  Google Scholar 

  20. Posada D, Crandall K A. Modeltest: Testing the model of DNA substitution. Bioinformatics, 1998, 14: 817–818, 9918953, 10.1093/bioinformatics/14.9.817, 1:CAS:528:DyaK1MXktlCltw%3D%3D

    Article  PubMed  Google Scholar 

  21. Xia X, Xie Z. DAMBE: Software package for data analysis in molecular biology and evolution. J Hered, 2001, 92: 371–373, 11535656, 10.1093/jhered/92.4.371, 1:STN:280:DC%2BD3MvptlagtA%3D%3D

    Article  PubMed  Google Scholar 

  22. Yang Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci, 1997, 13: 555–556, 9367129, 1:CAS:528:DyaK2sXntlGnu7s%3D

    PubMed  Google Scholar 

  23. Yang Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol, 1998, 15: 568–573, 9580986, 1:CAS:528:DyaK1cXislensL4%3D

    Article  PubMed  Google Scholar 

  24. Yang Z, Nielsen R. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol, 1998, 46: 409–418, 9541535, 10.1007/PL00006320, 1:CAS:528:DyaK1cXitlSgu7w%3D

    Article  PubMed  Google Scholar 

  25. Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 1998, 148: 929–936, 9539414, 1:CAS:528:DyaK1cXks1eitr8%3D

    PubMed  PubMed Central  Google Scholar 

  26. Yang Z. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol, 2000, 51: 423–432, 11080365, 1:CAS:528:DC%2BD3MXptFGk

    PubMed  Google Scholar 

  27. Yang Z, Wong W S, Nielsen R. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol, 2005, 22: 1107–1118, 15689528, 10.1093/molbev/msi097, 1:CAS:528:DC%2BD2MXjtFaisbk%3D

    Article  PubMed  Google Scholar 

  28. Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol, 2002, 19: 908–917, 12032247, 1:CAS:528:DC%2BD38Xks1Ojtbk%3D

    Article  PubMed  Google Scholar 

  29. Huang Y, Smith C A, Song H, et al. Insight into the human CD59 complement binding interface toward engineering new therapeutics. J Biol Chem, 2005, 280: 34073–34079, 16079145, 10.1074/jbc.M504922200, 1:CAS:528:DC%2BD2MXhtVKisbfP

    Article  PubMed  Google Scholar 

  30. Moll A, Hildebrandt A, Lenhof H P, et al. BALLView: An object-oriented molecular visualization and modeling framework. J Comput Aided Mol Des, 2005, 19: 791–800, 16470421, 10.1007/s10822-005-9027-x, 1:CAS:528:DC%2BD28XhslWntrg%3D

    Article  PubMed  Google Scholar 

  31. Moll A, Hildebrandt A, Lenhof H P, et al. BALLView: A tool for research and education in molecular modeling. Bioinformatics, 2006, 22: 365–366, 16332707, 10.1093/bioinformatics/bti818, 1:CAS:528:DC%2BD28XhtFaitrk%3D

    Article  PubMed  Google Scholar 

  32. Podlaha O, Zhang J. Positive selection on protein-length in the evolution of a primate sperm ion channel. Proc Natl Acad Sci, 2003, 100: 12241–12246, 14523237, 10.1073/pnas.2033555100, 1:CAS:528:DC%2BD3sXotlGksrY%3D

    Article  PubMed  PubMed Central  Google Scholar 

  33. Graur D. Molecular phylogeny and the higher classification of eutherian mammals. Trends Ecol Evol, 1993, 8: 141–147, 10.1016/0169-5347(93)90027-M

    Article  PubMed  Google Scholar 

  34. Goodman M, Porter C A, Czelusniak J, et al. Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phyl Evol, 1998, 9: 585–598, 10.1006/mpev.1998.0495, 1:STN:280:DyaK1czjsVGrsQ%3D%3D

    Article  Google Scholar 

  35. Li W H. Unbiased estimation of rates of synonymous and nonsynonymous substitution. J Mol Evol, 1993, 9: 96–99, 10.1007/BF02407308

    Article  Google Scholar 

  36. Pamilo P, Bianchi N O. Evolution of the Zfx and Zfy genes: Rates and interdependence between the genes. Mol Biol Evol, 1993, 10: 271–281, 8487630, 1:CAS:528:DyaK3sXitVKlurs%3D

    PubMed  Google Scholar 

  37. Yang Z. Inference of selection from multiple species alignments. Curr Opin Genet Dev, 2002, 12: 688–694, 12433583, 10.1016/S0959-437X(02)00348-9, 1:CAS:528:DC%2BD38XosFOhs7w%3D

    Article  PubMed  Google Scholar 

  38. Qin X, Miwa T, Aktas H, et al. Genomic structure, functional comparison, and tissue distribution of mouse Cd59a and Cd59b. Mamm Genome, 2001, 12: 582–589, 11471050, 10.1007/s00335-001-2060-8, 1:CAS:528:DC%2BD3MXltlyqtr8%3D

    Article  PubMed  Google Scholar 

  39. Bodian D L, Davis S J, Morgan B P, et al. Mutational analysis of active site and antibody epitopes of the complement-inhibitory glycoprotein, CD59. J Exp Med, 1997, 185: 507–516, 9053451, 10.1084/jem.185.3.507, 1:CAS:528:DyaK2sXhtFWmsrs%3D

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang YaPing.

Additional information

These authors have the equal contribution to this paper

Supported by the National Basic Research Program of China (973 Program, Grant No. 2007CB411600), the National Natural Science Foundation of China (Grant Nos. 30621092 and 30430110), and Bureau of Science and Technology of Yunnan Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Y., Peng, M., Zhou, W. et al. Evolution of cd59 gene in mammals. SCI CHINA SER C 50, 773–779 (2007). https://doi.org/10.1007/s11427-007-0095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0095-0

Keywords

Navigation