Skip to main content
Log in

Phylogenetic relationships of Cyprinidae (Teleostei: Cypriniformes) inferred from the partial S6K1 gene sequences and implication of indel sites in intron 1

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The family Cyprinidae is widely distributed in East Asia, and has the important phylogenetic significance in the fish evolution. In this study, the 5′ end partial sequences (containing exon 1, exon 2 and indel 1) of S6K1 gene were obtained from 30 representative species in Cyprinidae and outgroup using PCR amplification and sequencing. The phylogenetic relationships of Cyprinidae were reconstructed with neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian methods. Myxocyprinus asiaticus (Catostomidae) was assigned to the outgroup taxon. Similar phylogenetic relationships within the family Cyprinidae were achieved with the four analyses. Leuciscini and Barbini were monophyletic lineages respectively with the high nodal supports. Leuciscini comprises Hypophthalmichthyinae, Xenocyprinae, Cultrinae, Gobioninae, Acheilognathinae and East Asian species of Leuciscinae and Danioninae. Monophyly of East Asian clade was supported with high nodal support. Barbini comprises Schizothoracinae, Barbinae, Cyprininae and Labeoninae. The monophyletic lineage consisting of Danio rerio, D. myersi, and Rasbora trilineata was basal in the tree. In addition, the large fragment indels in intron 1 were analyzed to improve the understanding of Cyprinidae relationships. The results showed that the large fragment indels were correlated with the relations among species. Some conserved regions in intron 1 were thought to be involved in the functional regulation. However, no correlation was found between sequence variations and species characteristic size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y Y. Fauna Sinica, Osteichthyes, Cypriniformes (II) (in Chinese). Beijing: Science Press, 1998. 1–11

    Google Scholar 

  2. Chen X L, Le P Q, Lin R D. Major groups within the family Cyprinidae and their phylogenetic relationships. Acta Zootaxonomica Sin (in Chinese), 1984, 9 (4): 424–440

    Google Scholar 

  3. Howes G J. Systematics and biogeography: An overview. In: Winfield I J, Nelson J S, eds. Cyprinid Fishes: Systematics, Biology and Exploitation. London: Chapman and Hall, 1991. 1–33

    Chapter  Google Scholar 

  4. Yue P Q. Fauna Sinica, Osteichthyes, Cypriniformes (III) (in Chinese). Beijing: Science Press, 2000. 1–8

    Google Scholar 

  5. Simons A M, Mayden R L. Phylogenetic relationships of the western North American phoxinins (Actinopterygii:cyprinidae) as inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Mol Phylogenet Evol, 1998, 9: 308–329, 9562988, 10.1006/mpev.1997.0467, 1:CAS:528:DyaK1cXivVaiurs%3D

    Article  PubMed  CAS  Google Scholar 

  6. Simons A M, Mayden R L. Phylogenetic relationships of North American cyprinids and assessment of homology of the open posterior myodome. Copeia, 1999, (1): 13–21, 10.2307/1447380

    Article  Google Scholar 

  7. He S, Chen Y, Nakajima T. Sequences of cytochrome b gene for primitive cyprinid fishes in East Asia and their phylogenetic concerning. Chin Sci Bull, 2001, 46: 661–665, 1:CAS:528:DC%2BD3MXjvVagsb4%3D, 10.1007/BF03182830

    Article  CAS  Google Scholar 

  8. He S, Liu H, Chen Y, et al. Molecular phylogenetic relationships of eastern Asian Cyprinidae (Pisces: cyprinidformes) inferred from cytochrome b sequences. Sci China Ser C-Life Sci, 2004, 47(2): 130–138, 10.1360/03yc0034, 1:CAS:528:DC%2BD2cXjvVGku7k%3D

    Article  CAS  Google Scholar 

  9. Wang X, He S, Chen Y. Sequence variations of the S7 ribosomal protein gene in primitive cyprinid fishes: Implication on phylogenetic analysis. Chin Sci Bull, 2002, 47(19): 1638–1643, 10.1360/02tb9360, 1:CAS:528:DC%2BD38XotVCrtb0%3D

    CAS  Google Scholar 

  10. Wang X, Liu H, He S, et al. Sequence analysis of cytochrome b gene indicated that East Asian group of cyprinid subfamily Leuciscinae (Teleostei:Cyprinidae) evolved independently. Prog Natl Sci, 2004, 14(2): 132–137, 10.1080/10020070412331343261, 1:CAS:528:DC%2BD2cXitVaqsb4%3D

    Article  CAS  Google Scholar 

  11. Shima H, Pende M, Chen Y, et al. Disruption of the p70s6k/p85s6k gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J, 1998, 17: 6649–6659, 9822608, 10.1093/emboj/17.22.6649, 1:CAS:528:DyaK1cXnvF2jt70%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: From protein synthesis to cell size. Trends Biochem Sci, 2006, 31(6): 342–348, 16679021, 10.1016/j.tibs.2006.04.003, 1:CAS:528:DC%2BD28XlvFyrsbc%3D

    Article  PubMed  CAS  Google Scholar 

  13. Fumagalli S, Thomas G. S6 phosphorylation and signal transduction. In: Sonenberg N, et al. eds. Translational Control of Gene Expression. New York: Cold Spring Harbor Laboratory Press, 2000. 695–717

    Google Scholar 

  14. Holz M K, Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem, 2005, 280: 26089–26093, 15905173, 10.1074/jbc.M504045200, 1:CAS:528:DC%2BD2MXlvFymtrw%3D

    Article  PubMed  CAS  Google Scholar 

  15. Holz M K, Ballif B A, Gygi S P, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 2005, 123: 569–580, 16286006, 10.1016/j.cell.2005.10.024, 1:CAS:528:DC%2BD2MXht1yktrvK

    Article  PubMed  CAS  Google Scholar 

  16. Garcia-Bellido A, Cortes F, Milan M. Cell interactions in the control of size in drosophila wings. Proc Natl Acad Sci USA, 1994, 91: 10222–10226, 7937866, 10.1073/pnas.91.21.10222, 1:STN:280:DyaK2M%2FisVSitQ%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Sambrook J, Fritsch E, Maniatis T. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989

    Google Scholar 

  18. Thompson J D, Gibson T J, Plewniak F. The Clustal X windows interface: Flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25: 4876–4882, 9396791, 10.1093/nar/25.24.4876, 1:CAS:528:DyaK1cXntFyntQ%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Swofford D L. PAUP: Phylogenetic analysis using Parsimony, Version 4. Sinauer, Sunderland, Massachusetts, 2002

  20. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5: 150–163, 15260895, 10.1093/bib/5.2.150, 1:CAS:528:DC%2BD2cXntFGqu7s%3D

    Article  PubMed  CAS  Google Scholar 

  21. Xia X, Xie Z. DAMBE: Data analysis in molecular biology and evolution. J Hered, 2001, 92: 371–373, 11535656, 10.1093/jhered/92.4.371, 1:STN:280:DC%2BD3MvptlagtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  22. Posada D, Crandall K A. Modeltest: Testing the model of DNA substitution. Bioinformatics, 1998, 14(9): 817–818, 9918953, 10.1093/bioinformatics/14.9.817, 1:CAS:528:DyaK1MXktlCltw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  23. Huelsenbeck J P, Ronquist F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 2001, 17: 754–755, 11524383, 10.1093/bioinformatics/17.8.754, 1:STN:280:DC%2BD3MvotV2isw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  24. Ronquist F, Huelsenbeck J P. MRBAYES 3: Bayesian phylogenetic inference under mixed model. Bioinformatics, 2003, 19: 1572–1574, 12912839, 10.1093/bioinformatics/btg180, 1:CAS:528:DC%2BD3sXntlKms7k%3D

    Article  PubMed  CAS  Google Scholar 

  25. Matthee C A, Eick G, Willows-Munro S, et al. Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Mol Phylogenet Evol, 2007, 42: 827–837, 17101283, 10.1016/j.ympev.2006.10.002, 1:CAS:528:DC%2BD2sXisVCnsLY%3D

    Article  PubMed  CAS  Google Scholar 

  26. Montagne J, Stewart M J, Stocker H, et al. Drosophila S6 kinase: A regulator of cell size. Science, 1999, 285: 2126–2129, 10497130, 10.1126/science.285.5436.2126, 1:CAS:528:DyaK1MXmt12jsLY%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He ShunPing.

Additional information

Supported by the Development Plan of the State Key Fundamental Research of China (Grant No. 2004CB117402), the National Natural Science Foundation of China (Grant No. 30530120) and Chinese Postdoctoral Science Foundation (Grant No. 2005037684)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, X., Wang, X., Gan, X. et al. Phylogenetic relationships of Cyprinidae (Teleostei: Cypriniformes) inferred from the partial S6K1 gene sequences and implication of indel sites in intron 1. SCI CHINA SER C 50, 780–788 (2007). https://doi.org/10.1007/s11427-007-0076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0076-3

Keywords

Navigation