Skip to main content
Log in

Characteristics of echolocating bats’ auditory stereocilia length, compared with other mammals

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The stereocilia of the Organ of Corti in 4 different echolocating bats, Myotis adversus, Murina leucogaster, Nyctalus plancyi (Nyctalus velutinus), and Rhinolophus ferrumequinum were observed by using scanning electron microscopy (SEM). Stereocilia lengths were estimated for comparison with those of non-echolocating mammals. The specialized lengths of outer hair cells (OHC) stereocilia in echolocating bats were shorter than those of non-echolocating mammals. The specialized lengths of inner hair cells (IHC) stereocilia were longer than those of outer hair cells stereocilia in the Organ of Corti of echolocating bats. These characteristics of the auditory stereocilia length of echolocating bats represent the fine architecture of the electromotility process, helping to adapt to high frequency sound and echolocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brownell W E, Spector A A, Raphael R M, et al. Micro-and nanomechanics of the cochlear outer hair cell. Annu Rev Biomed Eng, 2001, 3: 169–194

    Article  PubMed  CAS  Google Scholar 

  2. Köppl C, Authier S. Quantitative anatomical basis for a model of micromechanical tuning in the Tokay gecko, (Gekko gecko). Hearing Res, 1995, 82(1): 14–25

    Article  Google Scholar 

  3. Fettiplace R, Fuchs P A. Mechanisms of hair cell tuning. Annu Rev Physiol, 1999, 61: 809–834

    Article  PubMed  CAS  Google Scholar 

  4. Tilney I G, Saunders J C. Actin filaments, stereocilia and hair cells of the bird cochlea. I Length, width and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol, 1983, 96: 807–821

    Article  PubMed  CAS  Google Scholar 

  5. Langer M G, Koitschev A, Haase H, et al. Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy. Ultramicroscopy, 2000, 82: 269–278

    Article  PubMed  CAS  Google Scholar 

  6. Lim D J. Functional structure of the organ of Corti: A review. Hearing Res, 1986, 22: 117–146

    Article  CAS  Google Scholar 

  7. Lenoir M, Ripoll C, Vago P. Structural and ultrastructural aspects of isolated immature cochlca outer hair cell maintained in short-term culture. Hearing Res, 1995, 88(1–2): 169–180

    Article  CAS  Google Scholar 

  8. Saunders J C, Garfinkle T J. Peripheral anatomy and physiology I. In: Willott J F, ed. The Auditory Psychobiology of the Mouse. Illinois: Springfield, 1983. 131–168

    Google Scholar 

  9. Wright A. Dimensions of the cochlea stereocilia in man and the guinea pig. Hearing Res, 1984, 13(1): 89–98

    Article  CAS  Google Scholar 

  10. Vater M, Lenoir M, Pujol R. Ultrastructure of the horseshoe bat’s organ of Corti. I. Scanning electron microscopy. J Comp Neuro, 1992, 318: 367–379

    Article  CAS  Google Scholar 

  11. Vater M, Lenoir M, Pujol R. Ultrastructure of the horseshoe bat’s organ of Corti. II. Scanning electron microscopy. J Comp Neuro, 1992, 318: 380–391

    Article  CAS  Google Scholar 

  12. Vater M, Kössl M. Further studies on the mechanics of the cochlear partition in the mustached bat. I. Ultrastructural observations on the tectorial membrane and its attachments. Hearing Res, 1996, 94(1–2): 63–77

    Article  CAS  Google Scholar 

  13. Kössl M, Foeller E, Drexl M, et al. Postnatal development of cochlear function in the mustached bat, Pteronotus parnellii. J Neurophysiol, 2003, 90: 2261–2273

    Article  PubMed  Google Scholar 

  14. Dannhof B J, Bruns V. The organ of Corti in the bat Hipposideros bicolor. Hearing Res, 1991, 53(2): 253–268

    Article  CAS  Google Scholar 

  15. Vater M, Siefer W. The cochlea of Tadarida brasiliensis: Specialized functional organization in a generalized bat. Hearing Res, 1995, 91(1–2): 178–195

    Article  CAS  Google Scholar 

  16. Simmons N B. In: Wilson D E, Reeder D M, eds. Order Chiroptera in Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: The Johns Hopkins University Press, 2005

    Google Scholar 

  17. Sun J H, Wang Q J, Jiang S C. Cochlca Scanning Electron Microscopy Atlas. Beijing: People’s Military Medical Press, 2006

    Google Scholar 

  18. Bauer C A, Brozoski T J. Cochlear structure and function after round window application of ototoxins. Hearing Res, 2005, 201(1–2): 121–131

    Article  CAS  Google Scholar 

  19. Fettiplace R, Fuchs P A. Mechanisms of hair cell tuning. Annu Rev Physiol, 1999, 61: 809–834

    Article  PubMed  CAS  Google Scholar 

  20. John D A. Bats Biology and Behaviour. New York. Oxford University Press, 1996. 83–85

    Google Scholar 

  21. Ulfendahl M, Khanna S M, Fridberger A, et al. Mechanical response characteristics of the hearing organ in the low-frequency regions of the cochlea. J Neurophysiol, 1996, 76(6): 3850–3862

    PubMed  CAS  Google Scholar 

  22. Heffner R S, Koay G, Heffner H E. Hearing in large (Eidolon helvum) and small (Cynopterus brachyotis) non-ccholocating fruit bats. Hearing Res, 2006, 21: 17–25

    Article  Google Scholar 

  23. Zhang S Y, Feng J, Li Z X, et al. Comparison of the echolocation signals in three species of bats at fly. Acta Zoologica Sinica, 1999, 45(4), 385–389

    Google Scholar 

  24. Bruns V, Goldbach M. Hair cells and tectorial membrane in the cochlea of the greater horseshoe bat. Ana Embryol, 1980, 161(1): 51–63

    Article  CAS  Google Scholar 

  25. Schneider M E, Belyantseva I A, Azevedo R B. et al. Rapid renewal of auditory hair bundles. Nature, 2002, 418: 837–838

    Article  PubMed  CAS  Google Scholar 

  26. Hudspeth A J, Corey D P. Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA, 1977, 74: 2407–2411

    Article  PubMed  CAS  Google Scholar 

  27. Liberman M C, Gao J, He D Z Z, et al. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature, 2002, 419(6904): 300–304

    Article  PubMed  CAS  Google Scholar 

  28. Jia S, He D Z Z. Motility-associated hair-bundle motion in mammalian outer hair cells. Nat Neurosci, 2005, 8: 1028–1034

    Article  PubMed  CAS  Google Scholar 

  29. Fettiplace R, Hackney C M. The sensory and motor roles of auditory hair cells. Nat Rev Neurosci, 2006, 7: 19–29

    Article  PubMed  CAS  Google Scholar 

  30. Raphael Y, Altschuler R A. Structure and innervation of the cochlea. Brain Res Bull, 2003, 60: 397–422

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Lei or Zhang ShuYi.

Additional information

These authors contributed equally to this work

Supported by the National Natural Science Foundation of China (Grant No. 30430120) and Foundation of President of the Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Q., Zeng, J., Zheng, Y. et al. Characteristics of echolocating bats’ auditory stereocilia length, compared with other mammals. SCI CHINA SER C 50, 492–496 (2007). https://doi.org/10.1007/s11427-007-0055-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0055-8

Keywords

Navigation