Skip to main content
Log in

PA1b, a plant peptide, induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel and triggers secretion in pancreatic β cells

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Using alginic acid to adsorb polypeptides at pH 2.7, we isolated a peptide pea albumin 1b (PA1b) from pea seeds. The PA1b is a single chain peptide consisting of 37 amino acid residues with 6 cysteines which constitutes the cystine-knot structure. Using microfluorometry and patch clamp techniques, we found that PA1b significantly elevated the intracellular calcium level ([Ca2+]i) and elicited membrane capacitance increase in the primary rat pancreatic β cells. The PA1b effect on [Ca2+]i elevation was abolished in the absence of extracellular Ca2+ or in the presence of L-type Ca2+ channel blocker, nimodipine. Interestingly, we found that PA1b significantly depolarized membrane potential, which could lead to the opening of voltage-dependent L-type Ca2+ channels and influx of extracellular Ca2+, and then evoke robust secretion. In this study we identified the plant peptide PA1b which is capable of affecting the excitability and function of mammalian pancreatic β cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspinwall C A, Lakey J R, Kennedy R T. Insulin-stimulated insulin secretion in single pancreatic β cells. J Biol Chem, 1999, 274(10): 6360–6365

    Article  PubMed  CAS  Google Scholar 

  2. Aspinwall C A, Qian W J, Roper M G, et al. Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in β-cells. J Biol Chem, 2000, 275(29): 22331–22338

    Article  PubMed  CAS  Google Scholar 

  3. Lee S H, Park I S. Effects of soybean diet on the β cells in the streptozotocin treated rats for induction of diabetes. Diabetes Res Clin Pract, 2000, 47(1): 1–13

    Article  PubMed  CAS  Google Scholar 

  4. Komatsu S, Hirano H. Plant basic 7 S globulin-like proteins have insulin and insulin-like growth factor binding activity. FEBS Lett, 1991, 294(3): 210–212

    Article  PubMed  CAS  Google Scholar 

  5. Watanabe Y, Barbashov S F, Komatsu S, et al. A peptide that stimulates phosphorylation of the plant insulin-binding protein: Isolation, primary structure and cDNA cloning. Eur J Biochem, 1994, 224(1): 167–172

    Article  PubMed  CAS  Google Scholar 

  6. Oliver S G. From DNA sequence to biological function. Nature, 1996, 379(6566): 597–600

    Article  PubMed  CAS  Google Scholar 

  7. Chen Z W, Agerberth B, Gell K, et al. Isolation and characterization of porcine diazepam-binding inhibitor, a polypeptide not only of cerebral occurrence but also common in intestinal tissues and with effects on regulation of insulin release. Eur J Biochem, 1988, 174(2): 239–245

    Article  PubMed  CAS  Google Scholar 

  8. Lou X L, Yu X, Chen X K, et al. Na+ channel inactivation: A comparative study between pancreatic islet β-cells and adrenal chromaffin cells in rat. J Physiol, 2003, 548(Pt 1): 191–202

    Article  PubMed  CAS  Google Scholar 

  9. Grynkiewicz G, Poenie M, Tsien R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem, 1985, 260(6): 3440–3450

    PubMed  CAS  Google Scholar 

  10. Xu T, Naraghi M, Kang H, et al. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys J, 1997, 73(1): 532–545

    Article  PubMed  CAS  Google Scholar 

  11. Garcia M C, Hermans M P, Henquin J C. Glucose-, calcium-and concentration-dependence of acetylcholine stimulation of insulin release and ionic fluxes in mouse islets. Biochem J, 1988, 254(1): 211–218

    PubMed  CAS  Google Scholar 

  12. Bezprozvanny I, Tsien R W. Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967). Mol Pharmacol, 1995, 48(3): 540–549

    PubMed  CAS  Google Scholar 

  13. Rustenbeck I, Leupolt L, Kowalewski R, et al. Heterogeneous characteristics of imidazoline-induced insulin secretion. Naunyn Schmiedebergs Arch Pharmacol, 1999, 359(3): 235–242

    Article  PubMed  CAS  Google Scholar 

  14. Neher E, Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA, 1982, 79(21): 6712–6716

    Article  PubMed  CAS  Google Scholar 

  15. Norton R S, Pallaghy P K. The cystine knot structure of ion channel toxins and related polypeptides. Toxicon, 1998, 36(11): 1573–1583

    Article  PubMed  CAS  Google Scholar 

  16. Yamazaki T, Takaoka M, Katoh E, et al. A possible physiological function and the tertiary structure of a 4-kDa peptide in legumes. Eur J Biochem, 2003, 270(6): 1269–1276

    Article  PubMed  CAS  Google Scholar 

  17. Hanada K, Nishiuchi Y, Hirano H. Amino acid residues on the surface of soybean 4-kDa peptide involved in the interaction with its binding protein. Eur J Biochem, 2003, 270(12): 2583–2592

    Article  PubMed  CAS  Google Scholar 

  18. Hanada K, Hirano H. Interaction of a 43-kDa receptor-like protein with a 4-kDa hormone-like peptide in soybean. Biochemistry, 2004, 43(38): 12105–12112

    Article  PubMed  CAS  Google Scholar 

  19. Chasserot-Golaz S, Hubert P, Thierse D, et al. Possible involvement of phosphatidylinositol 3-kinase in regulated exocytosis: Studies in chromaffin cells with inhibitor LY294002. J Neurochem, 1998, 70(6): 2347–2356

    Article  PubMed  CAS  Google Scholar 

  20. De Camilli P, Emr S D, McPherson P S, et al. Phosphoinositides as regulators in membrane traffic. Science, 1996, 271(5255): 1533–1539

    Article  PubMed  Google Scholar 

  21. Schiavo G, Gu Q M, Prestwich G D, et al. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc Natl Acad Sci USA, 1996, 93(23): 13327–13332

    Article  PubMed  CAS  Google Scholar 

  22. Roper M G, Qian W J, Zhang B B, et al. Effect of the insulin mimetic L-783,281 on intracellular Ca2+ and insulin secretion from pancreatic β-cells. Diabetes, 2002, 51(Suppl 1): S43–S49

    Article  PubMed  CAS  Google Scholar 

  23. Kulkarni R N, Bruning J C, Winnay J N, et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell, 1999, 96(3): 329–339

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen ZhengWang or Xu Tao.

Additional information

These authors contributed equally to this work

Supported by the National Natural Science Foundation of China (Grant Nos. 30370674, 30470448, and 30470646), the CAS Project (Grant No. KSCX2-SW-224), and the China “863” Program (Grant No. 2012AA214066). The laboratory of Tao Xu is also supported by the Partner Group Scheme of the Max Planck Institute for Biophysical Chemistry, Göttingen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Dun, X., Zhang, M. et al. PA1b, a plant peptide, induces intracellular [Ca2+] increase via Ca2+ influx through the L-type Ca2+ channel and triggers secretion in pancreatic β cells. SCI CHINA SER C 50, 285–291 (2007). https://doi.org/10.1007/s11427-007-0052-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0052-y

Keywords

Navigation