Skip to main content
Log in

The guanidine hydrochloride-induced denaturation of CP43 and CP47 studied by terahertz time-domain spectroscopy

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Terahertz time-domain spectroscopy (THz-TDS) is a new technique in studying the conformational state of a molecule in recent years. In this work, we reported the first use of THz-TDS to examine the denaturation of two photosynthesis membrane proteins: CP43 and CP47. THz-TDS was proven to be useful in discriminating the different conformational states of given proteins with similar structure and in monitoring the denaturation process of proteins. Upon treatment with guanidine hydrochloride (GuHCl), a 1.8 THz peak appeared for CP47 and free chlorophyll a (Chl a). This peak was deemed to originate from the interaction between Chl a and GuHCl molecules. The Chl a molecules in CP47 interacted with GuHCl more easily than those in CP43.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bricker T M. The structure and function of CP-1 and CP-2 in photo-system II. Photosynth Res, 1990, 24: 1–13

    Article  CAS  Google Scholar 

  2. Bricker T M, Frankel L K. The structure and function of CP47 and CP43 in photosystem II. Photosynth Res, 2002, 72: 131–146

    Article  PubMed  CAS  Google Scholar 

  3. Barber J, Morris E, Büchel C. Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. Biochim Biophys Acta, 2000, 1459: 239–247

    Article  PubMed  CAS  Google Scholar 

  4. Walther M, Fischer B M, Jepsen P U. Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared. Chem Phys, 2003, 288: 261–268

    Article  CAS  Google Scholar 

  5. Fischer B M, Walther M, Jepsen P U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys Med Biol, 2002, 47: 3807–3814

    Article  PubMed  CAS  Google Scholar 

  6. Nishizawa J, Suto K, Sasaki T, et al. Spectral measurement of terahertz vibrations of biomolecules using a Gap terahertz-wave generator with automatic scanning control. J Phys, 2003, 36: 2958–2961

    CAS  Google Scholar 

  7. Shen Y C, Upadhya P C, Linfield E H, et al. Temperature-dependent low-frequency vibrational spectra of purine and adenine. Appl Phys Lett, 2003, 82: 2350–2352

    Article  CAS  Google Scholar 

  8. Markelz A G, Roitberg A, Heilweil E J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem Phys Lett, 2000, 320: 42–48

    Article  CAS  Google Scholar 

  9. Walther M, Fischer B, Schall M, et al. Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy. Chem Phys Lett, 2000, 332: 389–395

    Article  CAS  Google Scholar 

  10. Smye S W, Chamberlain J M, Fitzgerald A J, et al. The interaction between terahertz radiation and biological tissue. Phys Med Biol, 2001, 46: R101–R112

    Article  PubMed  CAS  Google Scholar 

  11. Markelz A, Whitmire S, Hillebrecht J, et al.. THz time domain spectroscopy of biomolecular conformational modes. Phys Med Biol, 2002, 47: 3797–3805

    Article  PubMed  CAS  Google Scholar 

  12. Wang W N, Yue W W, Yan H T, et al. THz time-domain spectroscopy of amino acids. Chin Sci Bull, 2005, 50(15): 1561–1565

    Article  CAS  Google Scholar 

  13. Upadhyal P C, Shen Y C, Davies A G, et al. Terahertz time-domain spectroscopy of glucose and uric acid. J Biol Phys, 2003, 29: 117–121

    Article  Google Scholar 

  14. Walther M, Plochocka P, Fischer B, et al. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers, 2002, 67: 310–313

    Article  PubMed  CAS  Google Scholar 

  15. Fischer B, Walther M, Jepsen P Uhd. Far-infrared spectroscopy of hydrogen bonding in nucleobases, nucleosides, and nucleotides. In: Chamberlain J M, ed. Proc. of 2002 IEEE 10th International Conference on Terahertz Electronics, Cambridge, 2002. Piscataway: IEEE, 2002. 74–76

    Chapter  Google Scholar 

  16. Guo S K, Tang C Q, Yang Z L, et al. Effects of acid and alkali on the light absorption, energy transfer and protein secondary structures of core antenna subunits CP43 and CP47 of Photosystem II. Photochem Photobiol, 2004, 79: 291–296

    Article  PubMed  CAS  Google Scholar 

  17. Wang J S, Shan J X, Xu Q, et al. Light-and heat-induced denaturation of photosystem II core-antenna complexes CP43 and CP47. J Photochem Photobiol, 1999, 50: 189–196

    Article  CAS  Google Scholar 

  18. Alfonson M, Montoya G, Cases R, et al. Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry, 1994, 33: 10494–10500

    Article  Google Scholar 

  19. Shan J X, Wang J S, Ruan X, et al. Changes of absorption spectra during heat-induced denaturation of photosystem II core antenna complexes CP43 and CP47: revealing the binding states of chlorophyll molecules in these two complexes. Biochim Biophys Acta, 2001, 1504: 396–408

    Article  PubMed  CAS  Google Scholar 

  20. Groot M L, Peterman E J, van Stokkum I H, et al. Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Biophys J, 1995, 68: 281–290

    PubMed  CAS  Google Scholar 

  21. Weerd F L De, van Stokkum I H M, van Amerongen H, et al. Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of photosystem II. Biophys J, 2002, 82: 1586–1597

    PubMed  Google Scholar 

  22. Shan J X, Yang K Y, Feng L J, et al. Resonance Raman spectra of purified PSII core antenna complexes CP43 and CP47. Acta Bot Sin, 1999, 41: 280–284

    CAS  Google Scholar 

  23. De Paula J C, Liefshitz A, Hinsley S, et al. Structure-function relationship in the 47-kDa antenna protein and its complex fluorescence decay kinetics and resonance Raman spectroscopy. Biochemistry, 1994, 33: 1455–1466

    Article  PubMed  Google Scholar 

  24. Nozaki Y. The preparation of guanidine hydrochloride. Methods Enzymol, 1972, 26: 43–51

    Article  PubMed  CAS  Google Scholar 

  25. Jankowiak R, Zazubovich V, Rätsep M, et al. The CP43 core antenna complex of photosystem II possesses two quasi-degenerate and weakly coupled Qy-trap states. J Phys Chem, 2000, 104: 11805–11815

    CAS  Google Scholar 

  26. Qu Y G, Gong Y D, Guo S K, et al. Structural characteristics of extra-membrane domains and guanidine hydrochloride-induced denaturation of photosystem 2 core antenna complexes CP43 and CP47. Photosynthetica, 2006, 44: 447–453

    Article  CAS  Google Scholar 

  27. Dunbar J, Yennawar H P, Banerjee S, et al. The effect of denaturants on protein structure. Protein Sci, 1997, 6: 1727–1733

    Article  PubMed  CAS  Google Scholar 

  28. Korter T M, Balu R, Campbell M B, et al. Terahertz spectroscopy of solid serine and cysteine. Chem Phys Lett, 2006, 418: 65–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li LiangBi or Kuang TingYun.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 39890390)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Y., Chen, H., Qin, X. et al. The guanidine hydrochloride-induced denaturation of CP43 and CP47 studied by terahertz time-domain spectroscopy. SCI CHINA SER C 50, 350–355 (2007). https://doi.org/10.1007/s11427-007-0048-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0048-7

Keywords

Navigation