Skip to main content
Log in

A proteomic analysis of allograft rejection in rats after liver transplantation

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

In order to understand the allograft rejection in orthotopic liver transplantation (OLT), an allograft rejection rat model was established and studied by proteomic approach. The protein expression profiles of liver tissues were acquired by fluorescence two-dimensional difference gel electrophoresis (2D DIGE) that incorporated a pooled internal standard and reverse fluorescent labeling method. The expression levels of 27 protein spots showed significant changes in acute rejection rats. Among these spots, 19 were identified with peptide mass fingerprinting using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) after tryptic in-gel digestion. The results of the present paper could be helpful for our better understanding of allograft rejection in organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cy2:

3-[(4-carboxymethyl)-phenylmethyl]-3′-ethyloxacarbocyanine halide N-hydroxysuccinimidyl ester

Cy3:

1-(5-carboxypentyl)-1′-propylindocarbocyanine halide N-hydroxysuccinimidyl ester

Cy5:

1-(5-carboxypentyl)-1′-methylindodicarbo-cyanine halide N-hydroxysuccinimidyl ester

OLT:

orthotopic liver transplantation

ACN:

acetonitrile

TFA:

trifluroracetic acid

References

  1. Curry M P. Hepatitis B and hepatitis C viruses in liver transplantation. Transplantation, 2004, 78(7): 955–963

    Article  PubMed  Google Scholar 

  2. Anantharaju A, Van Thiel D H. Liver transplantation for alcoholic liver disease. Alcohol Res Health, 2003, 27(3): 257–268

    PubMed  Google Scholar 

  3. Wong L L. Current status of liver transplantation for hepatocellular cancer. Am J Surg, 2002, 183(3): 309–316

    Article  PubMed  Google Scholar 

  4. Frilling A, Malago M, Broelsch C E. Current status of liver trans-plantation for treatment of hepatocellular carcinoma. Dig Dis, 2001, 19(4): 333–337

    Article  PubMed  CAS  Google Scholar 

  5. Saadeh S, Davis G L. Management of ascites in patients with end-stage liver disease. Rev Gastroenterol Disord, 2004, 4(4): 175–185

    PubMed  Google Scholar 

  6. Gomez-Manero N, Herrero J I, Quiroga J, et al. Prognostic model for early acute rejection after liver transplantation. Liver Transplant, 2001, 7(3): 246–254

    Article  CAS  Google Scholar 

  7. Neuberger J. Incidence, timing, and risk factors for acute and chronic rejection. Liver Transplant Surg, 1999, 5(4): S30–36

    CAS  Google Scholar 

  8. Janssen H, Lange R, Erhard J, et al. Serum bile acids in liver trans-plantation-early indicator for acute rejection and monitor for antire-jection therapy. Transplant Int, 2001, 14(6): 429–437

    Article  CAS  Google Scholar 

  9. Zhou G, Li H, DeCamp D, et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics, 2002, 1(2): 117–124

    Article  PubMed  CAS  Google Scholar 

  10. Seike M, Kondo T, Fujii K, et al. Proteomic signature of human cancer cells. Proteomics, 2004, 4(9): 2776–2788

    Article  PubMed  CAS  Google Scholar 

  11. Wishart D S. Metabolomics: the principles and potential applications to transplantation. Am J Transplant, 2005, 5(12): 2814–2820

    Article  PubMed  CAS  Google Scholar 

  12. Pan T L, Wang P W, Huang C C, et al. Expression, by functional proteomics, of spontaneous tolerance in rat orthotopic liver trans-plantation. Immunology, 2004, 113(1): 57–64

    Article  PubMed  CAS  Google Scholar 

  13. Pan T L, Goto S, Lord R, et al. Proteome analysis in liver transplantation. Transplant Proc, 2001, 33(1–2): 156

    Article  PubMed  CAS  Google Scholar 

  14. Clarke W, Silverman B C, Zhang Z, et al. Characterization of renal allograft rejection by urinary proteomic analysis. Ann Surg, 2003, 237(5): 660–665

    Article  PubMed  Google Scholar 

  15. Kamada N, Calne R Y. A surgical experience with five hundred and thirty liver transplants in the rat. Surgery, 1983, 93: 64–69

    PubMed  CAS  Google Scholar 

  16. Alban A, David S O, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003, 3(1): 36–44

    Article  PubMed  CAS  Google Scholar 

  17. Yan J X, Wait R, Berkelman T, et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis, 2000, 21(17): 3666–3672

    Article  PubMed  CAS  Google Scholar 

  18. Zhang C, Wei J, Zheng Z, et al. Proteomic analysis of Deinococcus radiodurans recovering from gamma-irradiation. Proteomics, 2005, 5(1): 138–143

    Article  PubMed  CAS  Google Scholar 

  19. Le Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation, 2002, 73(9): 1373–1381

    Article  PubMed  Google Scholar 

  20. Rogers L A, Zlotnik A, Lee F, et al. The maintenance of lytic specificity during the development of clones of cytotoxic T lymphocytes from single precursor cells. J Immunol Methods, 1991, 143(2): 241–250

    Article  PubMed  CAS  Google Scholar 

  21. Kaminski E R, Kaminski A, Bending M R, et al. In vitro cytokine profiles and their relevance to rejection following renal transplantation. Transplantation, 1995, 60(7): 703–706

    Article  PubMed  CAS  Google Scholar 

  22. Bosron W F, Li T K. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases and their relationship to alcohol metabolism and alcoholism. Hepatology, 1986, 6(3): 502–510

    Article  PubMed  CAS  Google Scholar 

  23. Yokoyama A, Kato H, Yokoyama T, et al. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma. Carcinogenesis, 2002, 23(11): 1851–1859

    Article  PubMed  CAS  Google Scholar 

  24. Li J, Li Q, Xie C, et al. β-actin is required for mitochondria clustering and ROS generation in TNF-induced, caspase-independent cell death. J Cell Sci, 2004, 117(20): 4673–4680

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li LanJuan.

Additional information

These authors contributed equally to this work

Supported by the Key Basic Research and Development Program of China (Grant No. 2003CB515506), and in part by the Chinese Human Liver Proteome Project (CNHLPP) (Grant No. 2004BA711A18)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Zhu, F., Wei, J. et al. A proteomic analysis of allograft rejection in rats after liver transplantation. SCI CHINA SER C 50, 312–319 (2007). https://doi.org/10.1007/s11427-007-0038-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0038-9

Keywords

Navigation