Skip to main content
Log in

Enhancing terpenoid indole alkaloid production by inducible expression of mammalian Bax in Catharanthus roseus cells

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Bax, a mammalian pro-apoptotic member of the Bcl-2 family, triggers hypersensitive reactions when expressed in plants. To investigate the effects of Bax on the biosynthesis of clinically important natural products in plant cells, we generate transgenic Catharanthus roseus cells overexpressing a mouse Bax protein under the β-estradiol-inducible promoter. The expression of Bax in transgenic Catharanthus roseus cells is highly dependent on β-estradiol concentrations applied. Contents of catharanthine and total terpenoid indole alkaloid of the transgenic cells treated with 30 μmol/L β-estradiol are 5.0-and 5.5-fold of the control cells. Northern and Western blotting results show that expression of mammalian Bax induces transcriptional activation of Tdc and Str, two key genes in terpenoid indole alkaloid biosynthetic pathway of Catharanthus roseus cells, and stimulates the accumulation of defense-related protein PR1 in the cells, showing that the mouse Bax triggers the defense responses of Catharanthus roseus cells and activates the terpenoid indole alkaloid biosynthetic pathway. Thus, our data suggest that the mammalian Bax might be a potential regulatory factor for secondary metabolite biosynthesis in plant cells and imply a new secondary metabolic engineering strategy for enhancing the metabolic flux to natural products by activating the whole biosynthetic pathway rather than by engineering the single structural genes within the pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verpoorte R, Van der Heijden R, Van Gulik W M, et al. In: Brossi A, ed. The Alkaloids, Vol 40. New York: Academic Press, 1991. 2–187

    Google Scholar 

  2. Roberts S C, Shuler M L. Large-scale plant cell culture. Curr Op Biotechnol, 1997, 8: 154–159

    Article  CAS  Google Scholar 

  3. Yu S W, Ou-Yang G C. The material basis of plant pathogenic resistance. In: Yu S W, Tang Z C, eds. Plant Physiology and Molecular Biology (in Chinese). Beijing: Science Press, 1999. 770–783

    Google Scholar 

  4. Ebel J, Scheel D. Elicitor recognition and signal transduction. In: Boller T, Meins F, eds. Genes Involved in Plant Defense. New York: Springer-Verlag, 1992. 183–205

    Google Scholar 

  5. Ciddi V, Srinivasan V, Shuler M L. Elicitation of Taxus sp. cell cultures for production of taxol. Biotechnol Lett, 1995, 17: 1343–1346

    Article  CAS  Google Scholar 

  6. Li C, Yuan Y J, Ma Z H, et al. Changes of physiological state of suspension cultures of Taxus chinensis var. mairei induced by oligosarchride. J Chem Indus Engineer (in Chinese), 2002, 53(11): 1133–1138

    CAS  Google Scholar 

  7. Buchanan B B, Gurissem W, Jones R L. Biochemistry and Molecular Biology of Plants, 1st ed. American Society of Plant Physiologists, 2000. 1250–1316

  8. Baek D, Nam J, Koo Y D, et al. Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and-independent processes. Plant Mol Biol, 2004, 56: 15–27

    Article  PubMed  CAS  Google Scholar 

  9. Lacomme S, Cruz S S. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc Natl Acad Sci USA, 1999, 96: 7956–7961

    Article  PubMed  CAS  Google Scholar 

  10. Murashige T, Skoog F A A. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant, 1962, 15: 473–479

    Article  CAS  Google Scholar 

  11. Clark M S. Plant Molecular Biology—A Laboratory Manual. 1st ed. Berlin Heidelberg: Springer-Verlag, 1979. 305–340

    Google Scholar 

  12. Cruz S S, Chapman S, Roberts S C, et al. Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci USA, 1996, 93: 6286–6290

    Article  PubMed  CAS  Google Scholar 

  13. Menke F L, Parchmann S, Mueller MJ, et al. Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol, 1999, 19: 1289–1296

    Article  Google Scholar 

  14. De Luca V, Marineau C, Brisson N. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: Comparison with animal dopa decarboxylases. Proc Natl Acad Sci USA, 1989, 86: 2582–2586

    Article  PubMed  Google Scholar 

  15. Pasquali G, Goddijn O J, de Waal A, et al. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol, 1992, 18: 1121–1131

    Article  PubMed  CAS  Google Scholar 

  16. Xu M J, Dong J F. Nitric oxide stimulates indole alkaloid production in Catharanthus roseus cell suspension cultures through a protein kinase-dependent signal pathway. Enzyme Microb Technol, 2005, 37: 49–53

    Article  CAS  Google Scholar 

  17. Zuo J R, Niu Q W, Chua N H. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J, 2000, 24: 265–274

    Article  PubMed  CAS  Google Scholar 

  18. Canel C, Lopes-Cardoso M I, Whitmer S, et al. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta, 1998, 205: 414–419

    Article  PubMed  CAS  Google Scholar 

  19. Kutchan T M. Alkaloid biosynthesis [mdash]: The basis for metabolic engineering of medicinal plants. Plant Cell, 1995, 7: 1059–1070

    Article  PubMed  CAS  Google Scholar 

  20. Meijer A H, Verpoorte R, Hoge J H C. Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Plant Res, 1993, 3: 145–164

    Google Scholar 

  21. Goddijn O J M, Lohman F P, De Kam R J, et al. Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum. Mol Gen Genet, 1994, 242: 217–225

    Article  PubMed  CAS  Google Scholar 

  22. Xu M J, Dong J F. Elicitor-induced nitric oxide burst is essential for triggering catharanthine synthesis in Catharanthus roseus suspension cells. Appl Microbiol Biotechnol, 2005, 67: 40–44

    Article  PubMed  CAS  Google Scholar 

  23. Linthorst H J M. Pathogenesis-related proteins of plants. Crit Rev Plant Sci, 1991, 10: 123–150

    Article  CAS  Google Scholar 

  24. Simonen M, Keller H, Heim J. The BH3 domain of Bax is sufficient for interaction of Bax with itself and with other family members and it is required for induction of apoptosis. Eur J Biochem, 1997, 249: 85–91

    Article  PubMed  CAS  Google Scholar 

  25. Zha H, Aime-Sempe C, Sato T, et al. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem, 1997, 271: 7440–7444

    Google Scholar 

  26. Kiwai-Yamada M, Jin L, Yoshinage K, et al. Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc Natl Acad Sci USA, 2001, 98: 12295–1300

    Article  Google Scholar 

  27. Zhao J, Zhu W, Hu Q. Selection of fungal elicitors to increase indole alkaloid accumulation in Catharanthus roseus suspension cell culture. Enzyme Microb Technol, 2001, 28: 666–672

    Article  PubMed  CAS  Google Scholar 

  28. Xu M J, Dong J, Zhu M Y. Effect of nitric oxide on catharanthine production in Catharanthus roseus suspension cells. Biotechnol Bioeng, 2005, 89: 367–371

    Article  PubMed  CAS  Google Scholar 

  29. Capell T, Christou P. Progress in plant metabolic engineering. Curr Opin Biotechnol, 2004, 15:148–154

    Article  PubMed  CAS  Google Scholar 

  30. Sato F, Hashimoto T, Haciya A, et al. Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA, 2001, 98: 367–372

    Article  PubMed  CAS  Google Scholar 

  31. Rothe G, Hachiya A, Yamada Y, et al. Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. J Exp Bot, 2003, 54(390): 2065–2070

    Article  PubMed  CAS  Google Scholar 

  32. Moyano E, Jouhikainen K, Tammela P, et al. Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot, 2003, 54(381): 203–211

    Article  PubMed  CAS  Google Scholar 

  33. Hahlbrock K, Bednarek P, Ciolkowski I, et al. Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci USA, 2003, 100s: 14569–14576

    Article  CAS  Google Scholar 

  34. Broun P, SomervIlle C. Progress in plant metabolic engineering. Proc Natl Acad Sci USA, 2001, 16: 8925–8927

    Article  Google Scholar 

  35. Bovy A, de Vos R, Kemper M, et al. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell, 2002, 14(10): 2509–2526

    Article  PubMed  CAS  Google Scholar 

  36. Yu O, Shi J, Hession A O. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry, 2003, 63: 753–763

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu MaoJun.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30572331), the Natural Science Foundation of Zhejiang Province (Grant No. 302785), and the Key Scientific Project of Zhejiang High Education Commission

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Dong, J. Enhancing terpenoid indole alkaloid production by inducible expression of mammalian Bax in Catharanthus roseus cells. SCI CHINA SER C 50, 234–241 (2007). https://doi.org/10.1007/s11427-007-0030-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0030-4

Keywords

Navigation