Skip to main content
Log in

Developmental expression of amphioxus RACK1

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Vertebrate RACK1 plays a key role in embryonic development. This paper described the cloning, phylogenetic analysis and developmental expression of AmphiRACK1, the RACK1 homologous gene in amphioxus. Phylogenetic analysis indicated that amphioxus RACK1 was located at the base of vertebrate clade. AmphiRACK1 expression in lithium-treated embryos was also examined. During embryonic development, AmphiRACK1 was expressed strongly in cerebral vesicles, neural tubes and somites. In lithium-treated embryos, the segmental expression of AmphiRACK1 in somites became blurry and decreased. Its expression in cerebral vesicles and neural tubes was also weaker or disappeared. In the adult animal, AmphiRACK1 transcripts were detected in the epithelium of midgut diverticulus and gut, wheel organ, gill blood vessels and testis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaken S. Protein kinase C isoenzymes and substrates. Curr Opin Cell Biol, 1996, 8: 168–173

    Article  PubMed  CAS  Google Scholar 

  2. Gallicano G I, Yousef M C, Capco D G. PKC: a pivotal regulator of early development. Bioassays, 1997, 19: 29–36

    Article  CAS  Google Scholar 

  3. Mochly-Rosen D, Khaner H, Lopez J. Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci USA, 1991, 88: 3997–4000

    Article  PubMed  CAS  Google Scholar 

  4. Chang B Y, Conroy K B, Machleder E M, et al. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Mol Cell Biol, 1998, 18: 3245–3256

    PubMed  CAS  Google Scholar 

  5. Liliental J, Chang D D. Rack1, a receptor for activated protein kinase C, interacts with integrin beta subunit. J Biol Chem, 1998, 273: 2379–2383

    Article  PubMed  CAS  Google Scholar 

  6. Rodriguez M M, Ron D, Touhara K, et al. RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro. Biochemistry, 1999, 38: 13787–13794

    Article  PubMed  CAS  Google Scholar 

  7. Yarwood S J, Steele M R, Scotland G, et al. The RACK1 signaling scaffold protein selectively interacts with the cAMP-specific phosphodiesterase PDE4D5 isoform. J Biol Chem, 1999, 274: 14909–14917

    Article  PubMed  CAS  Google Scholar 

  8. Hermanto U, Zong C S, Li W, et al. RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-de-pendent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol, 2002, 22(7): 2345–2365

    Article  PubMed  CAS  Google Scholar 

  9. Chen S, Dell E J, Lin F, et al. RACK1 regulates specific functions of Gbetagamma. J Biol Chem, 2004, 279: 17861–17868

    Article  PubMed  CAS  Google Scholar 

  10. Kwon H J, Bae S, Son Y H, et al. Expression of the Xenopus homologue of the receptor for activated C-kinase 1 (RACK1) in the Xenopus embryo. Dev Genes Evol, 2001, 211: 195–197

    Article  PubMed  CAS  Google Scholar 

  11. Ashique A M, Kharazia V, Yaka R, et al. Localization of the scaffolding protein RACK1 in the developing and adult mouse brain. Brain Res, 2006, 1069(1): 31–38

    Article  PubMed  CAS  Google Scholar 

  12. Hui C L, Eric C S, Walter D S, et al. Evidence for a role of protein kinase C in FGF signal transduction in the developing chick limb bud. Development, 2001, 128: 2451

    Google Scholar 

  13. Klein P S, Melton D A. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA, 1996, 93: 8455–8459

    Article  PubMed  CAS  Google Scholar 

  14. Zhen X, Torres C, Friedman E. Lithium regulates protein tyrosine phosphatase activity in vitro and in vivo. Psychopharmacology (Berl), 2002, 162: 379–384

    Article  CAS  Google Scholar 

  15. Horstadius S, Josefsson L. Endogenous morphogenetic substances of sea urchin influencing the larval differentiation. Acta Embryol Exp (Palermo), 1973, 1: 71–88

    Google Scholar 

  16. Kao K R, Elinson R P. The entire mesodermal mantle behaves as Spemann’s organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev Biol, 1988, 127: 64–77

    Article  PubMed  CAS  Google Scholar 

  17. Stachel S E, Grunwald D J, Myers P Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development, 1993, 117: 1261–1274

    PubMed  CAS  Google Scholar 

  18. Linask K K, Ludwig C, Han M D, et al. N-cadherin/catenin-mediated morphoregulation of somites formation. Dev Biol, 1998, 202: 85–102

    Article  PubMed  CAS  Google Scholar 

  19. Yasui K, Li G, Wang Y, et al. Beta-catenin in early development of the lancelet embryo indicates specific determination of embryonic polarity. Dev Growth Differ, 2002, 44: 467–475

    Article  PubMed  CAS  Google Scholar 

  20. Holland L Z, Panfilio K A, Chastain R, et al. Nuclear beta-catenin promotes non-neural ectoderm and posterior cell fates in amphioxus embryos. Dev Dyn, 2005, 233(4): 1430–1443

    Article  PubMed  CAS  Google Scholar 

  21. Tung T C, Wu S C, Tung Y F. The development of isolated blastomere of amphioxus. Sci Sin, 1958, 7: 1280–1320

    PubMed  CAS  Google Scholar 

  22. Huang X, Wang L, Zhang H. Expression pattern of HMGB gene in the development of amphioxus, Branchiostoma belcheri tsingtauense. Int J Dev Biol, 2005, 49: 43–46

    Article  Google Scholar 

  23. Holland P W. Whole mount in situ hybridization to amphioxus embryos. Methods in Mol Biol, 1999, 97: 641–644

    CAS  Google Scholar 

  24. Grunewald-Janho S, Keesey J, Leous M, et al. Nonradioactive in situ Hybridization Application Manual. 2nd edition. Mannheim: Boehringer Mannheim GmbH Press, 1996

    Google Scholar 

  25. Neer E J, Schmidt C J, Nambudripad R, et al. The ancient regulatory-protein family of WD-repeat proteins. Nature, 1994, 371: 297–300

    Article  PubMed  CAS  Google Scholar 

  26. Vani K, Yang G, Mohler J. Isolation and cloning of a Drosophila homolog to the mammalian RACK1 gene, implicated in PKC-mediated signalling. Biochim Biophys Acta, 1997, 1358: 67–71

    Article  PubMed  CAS  Google Scholar 

  27. Dehghani H, Hahnel A C. Expression profile of protein kinase C isozymes in preimplantation mouse development. Reproduction, 2005, 130(4): 441–451

    Article  PubMed  CAS  Google Scholar 

  28. Liang K, Lin Y, Zhang Y, et al. Developmental expression of amphioxus GABAA receptor-associated protein-like 2 gene. Dev Genes Evol, 2004, 214: 339–341

    Article  PubMed  CAS  Google Scholar 

  29. Huang X, Zhang W, Zhang H. Phylogenetic analysis and developmental expression of thymosin-beta 4 gene in amphioxus. Dev Genes Evol, 2005, 215(7): 364–368.

    Article  PubMed  CAS  Google Scholar 

  30. Kitazawa C, Takai K K, Nakajima Y, et al. LiCl inhibits the establishment of left-right asymmetry in larvae of the direct-developing echinoid Peronella japonica. J Exp Zoolog A Comp Exp Biol, 2004, 301: 707–717

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mao BingYu or Zhang HongWei.

Additional information

These authors contributed equally to this work

Supported by the National Natural Science Foundation of China (Grant Nos. 30270693 and 30570967)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Zhang, W., Li, X. et al. Developmental expression of amphioxus RACK1 . SCI CHINA SER C 50, 329–334 (2007). https://doi.org/10.1007/s11427-007-0025-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0025-1

Keywords

Navigation