Skip to main content
Log in

Putative epidermal stem cell convert into corneal epithelium-like cell under corneal tissue in vitro

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Rhesus putative epidermal stem cells are being investigated for their potential use in regenerative corneal epithelium-like cells, which may provide a practical source of autologous seed cells for the construction of bioengineered corneas. The goal of this study was to investigate the potential of epidermal stem cells for trans-differentiation into corneal epithelium-like cells. Rhesus putative epidermal stem cells were isolated by type IV collagen attachment method. Flow cytometry analysis, immunohistology and RT-PCR were conducted to identify the expression of specific markers (β1m α6 integrin, K15, K1/K10, K3/K12 and CD71) on the isolated rapid attaching cells. The isolated cells were cocultured with human corneal limbal stroma and corneal epithelial cells. After coculture, the expression of the same specific markers was evaluated in order to identify expression difference caused by the coculture conditions. K3/K12 expression was analyzed in coculture cells on day 2, 4, 6, 8 and 10. Putative epidermal stem cells in conditioned culture media were used as control. Putative epidermal stem cells were predominant in rapid attaching cells by type IV collagen attachment isolation. Before being cocultured, the rhesus putative epidermal stem cells expressed K15, α6 and β1 integrin, but no CD71, K1/K10 and K3/K12. After coculture, these cells expressed K3/K12 (a marker of corneal epithelial cells), K15 and β1 integrin, but no K1/K10. Cells being not coculture converted into terminally differentiated cells expressing K1/K10. These results indicate that rhesus putative epidermal stem cells can trans-differentiate into corneal epithelium-like cells and, therefore, may have potential therapeutic application as autologous seed cells for the construction of bioengineered corneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitcher J P, Srinivasan M, Upadhyay M P. Corneal blindness: A global perspective. Bull World Health Organ, 2001, 79(3): 214–221

    PubMed  CAS  Google Scholar 

  2. Tsai R J, Li L M, Chen J K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med, 2000, 343(2): 86–93

    Article  PubMed  CAS  Google Scholar 

  3. Griffith M, Osborne R, Munger R, et al. Functional human corneal equivalents constructed from cell lines. Science, 1999, 286(5447): 2169–2172

    Article  PubMed  CAS  Google Scholar 

  4. Griffith M, Hakim M, Shimmura S, et al. Artificial human corneas: Scaffolds for transplantation and host regeneration. Cornea, 2002, 21(Supp 7): S54–61

    Article  PubMed  Google Scholar 

  5. Carlsson D J, Li F, Shimmura S, et al. Bioengineered corneas: How close are we? Curr Opin Ophthalmol, 2003, 14(4): 192–197

    Article  PubMed  Google Scholar 

  6. Wang Z C, Ge J, Huang B, et al. Differentiation of embryonic stem cells into corneal epitheliuml. Sci China Ser C-life Sci, 2005, 48(5): 471–480.

    Article  CAS  Google Scholar 

  7. Vogel G. Harnessing the power of stem cells. Science, 1999, 283(5407): 1432–1434

    Article  PubMed  CAS  Google Scholar 

  8. Mckay R. Stem cells—hype and hope. Nature, 2000; 406(6794): 361–364.

    Article  PubMed  CAS  Google Scholar 

  9. Kuehnle I, Goodell M A. The therapeutic potential of stem cells from adults. BMJ, 2002, 325(7360): 372–376

    Article  PubMed  Google Scholar 

  10. Peng H M, Chen G A. Neural precursors derived from human embryonic stem cells. Science in China Series C-Life Sciences. 2005, 48(3): 295–299.

    Article  Google Scholar 

  11. Toma J G, Akhavan M, Fernandes K J, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol, 2001, 3(9): 778–784

    Article  PubMed  CAS  Google Scholar 

  12. Xue Q, Liu J, Sun H, et al. Superficial Skin Cell Culturing in vitro (in Chinese). Beijing: Science Press, 2001. 409–421

    Google Scholar 

  13. Jones P H, Harper S, Watt F M. Stem cell patterning and fate in human epidermis. Cell, 1995, 80(1): 83–93

    Article  PubMed  CAS  Google Scholar 

  14. Jeng W, Cooper D R, Bittle P et al. Aquaporin-1 expression in proximal tuble epithelial cells of human kidney is regulated by hyperosmolarity and contrast agents. Biochem Biophys Res Com, 1999, 256(1): 240–248

    Article  Google Scholar 

  15. Li A, Simmons P J, Kaur P. Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA, 1998, 95(7): 3902–3907

    Article  PubMed  CAS  Google Scholar 

  16. Braun K M, Niemann C, Jensen U B, et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development, 2003, 130(21): 5241–5255.

    Article  PubMed  CAS  Google Scholar 

  17. Yang X, Cao B, Feng X, et al. Cloning and induction of adult goat skin stem cells. Chinese J Reconstructive Surgery (in Chinese), 2003, 17(2): 93–96

    Google Scholar 

  18. Reubinoff B E, Pera M F, Fong CY, et al. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nat Biotechnol, 2000, 18(4): 399–404

    Article  PubMed  CAS  Google Scholar 

  19. Gritti A, Vescovi A L, Galli R. Adult neural stem cells: Plasticity and developmental potential. J Physiol Paris, 2002, 96(1–2): 81–90

    Article  PubMed  CAS  Google Scholar 

  20. Fuchs E, Segre J A. Stem cells: A new lease on life. Cell, 2000, 100(1): 143–155

    Article  PubMed  CAS  Google Scholar 

  21. Tsai Rt Y, Kittappa R, McKay R G. Plasticity, niches, and the use of stem cells. Developmental Cell, 2002, 2(6): 707–712

    Article  PubMed  CAS  Google Scholar 

  22. Zheng M, Wang D M, Jiao W C, et al. Neural stem cell amplified and differentiated into dopaminergic neural cell in vitro. Chin Sci Bull, 2003, 48(10): 1041–1044

    Article  Google Scholar 

  23. Watt F M, Hogan B L. Out of Eden: Stem cells and their niches. Science, 2000, 287(5457): 1427–1430

    Article  PubMed  CAS  Google Scholar 

  24. Gekas C, Dieterlen-Lièvre F, Orkin S H, et al. The placenta is a niche for hematopoietic stem cells. Developmental Cell, 2005, 8(3): 365–375

    Article  PubMed  CAS  Google Scholar 

  25. Alison M R, Poulsom R, Jeffery R, et al. Hepatocytes from non-hepatic adult stem cells. Nature, 2000, 406(6793): 257

    Article  PubMed  CAS  Google Scholar 

  26. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow derived myogenic prognitors. Science, 1998, 279(5356): 1528–1530

    Article  PubMed  CAS  Google Scholar 

  27. Brazelton T R, Rossi F M, Keshet G I, et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000, 290(5497): 1775–1779

    Article  PubMed  CAS  Google Scholar 

  28. Mezey E, Chandross K J, Harta G, et al. Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 2000, 290(5497): 1779–1782

    Article  PubMed  CAS  Google Scholar 

  29. Pereira R F, O’Hara M D, Laptev A V, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA, 1998, 95(3): 1142–1147

    Article  PubMed  CAS  Google Scholar 

  30. Bjornson C R, Rietze R L, Reynolds B A, et al. Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science, 1999, 283(5401): 534–547

    Article  PubMed  CAS  Google Scholar 

  31. Clarke D L, Johansson C B, Wilbertz J, et al. Generalized potential of adult neural stem cells. Science, 2000, 288(5471): 1660–1663

    Article  PubMed  CAS  Google Scholar 

  32. Jackson K A, Mi T, Goodell M A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA, 1999, 96(25): 14482–14486

    Article  PubMed  CAS  Google Scholar 

  33. Jang Y Y, Collector M I, Baylin S B, et al. Hematopoietic stem cells convert into liver cells within days without fusion. Nature, 2004, 6(6): 532–539

    CAS  Google Scholar 

  34. Belicchi M, Pisati F, Lopa R, et al. Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J Neurosci Res, 2004, 77(4): 475–486

    Article  PubMed  CAS  Google Scholar 

  35. Coulombre, J L, Coulombre A J. Metaplastic induction of scales and feathers in the corneal anterior epithelium of the chick embryo. Dev Biol, 1971, 25(3): 464–478

    Article  PubMed  CAS  Google Scholar 

  36. Yang Z M, Tong Y X. The uitrastructure of tadpole paranecrotic skin during the process of induction and differentiation into cornea. Acta Biol Exp Sin (in Chinese), 1988; 21(4): 443–455

    CAS  Google Scholar 

  37. Zhang H W. Developmental Biology (in Chinese). Beijing: Higher Education Press, 2001

    Google Scholar 

  38. Taylor G, Lehrer M S, Jensen P J, et al. Involvement of follicular stem cells in Forming not only the follicle but also the epidermis. Cell, 2000, 102(2): 451–461

    Article  PubMed  CAS  Google Scholar 

  39. Huang B, Wang Z C, Ge J, et al. A pilot study on transdifferentiation of skin stem cell in reconstructing corneal epithelium. Chin Med J, 2004, 84(10): 838–842

    Google Scholar 

  40. Morasso M I, Tomic-Canic M. Epidermal stem cells: The cradle of epidermal determination, differentiation and wound healing. Biol Cell, 2005, 97(3): 173–183

    Article  PubMed  CAS  Google Scholar 

  41. Pearton D J, Ying Y, Danielle D, et al. Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals. Proc Natl Acad Sci USA, 2005, 102(10): 3714–3719

    Article  PubMed  CAS  Google Scholar 

  42. Gambardella L, Barrandon Y. The multifaceted adult epidermal stem cell. Curr Opn Cell Biol, 2003, 15(6): 771–777

    Article  CAS  Google Scholar 

  43. Ferraris C, Chevalier G, Favier B, et al. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development, 2000, 127(24): 5487–5495

    PubMed  CAS  Google Scholar 

  44. Pearton D J, Ferraris C, Dhouailly D. Transdifferentiation of corneal epithelium: evidence for a linkage between the segregation of epidermal stem cells and the induction of hair follicles during embryogenesis. Int J Dev Biol, 2004, 48(2–3): 197–201

    Article  PubMed  CAS  Google Scholar 

  45. Fu X, Sun X, Li X, et al. Dedifferentiation of epidermal cells to stem cells in vivo. Lancet, 2001, 358(9287): 1067–1068

    Article  PubMed  CAS  Google Scholar 

  46. Fu X B, Sun X Q, Sun T Z, et al. Epidermal growth factor induces the epithelial stem cell island formation in the regenerated epidermis. Chin Med J, 2001, 81(12): 733–736

    CAS  Google Scholar 

  47. Watt F M, Hogan B L. Out of Eden: Stem cells and their niches. Science, 2000, 287(5457): 1427–1430

    Article  PubMed  CAS  Google Scholar 

  48. Janes S M, Lowell S, Hutter C. Epidermal stem cells. J Pathol, 2002, 197(4): 479–491

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Bing.

Additional information

Supported in part by Hi-tech Research and Development Program of China (Grant No. 2003AA205005), the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, No.20030558074), the Key Technologies Research and Development Programme of the Tenth Five-Year Plan (Grant No. 2004BA720A15), Scientific and Technological Program (Grant Nos. A3020101 and 2003A3020401) of Guangdong Province

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, N., Wang, Z., Huang, B. et al. Putative epidermal stem cell convert into corneal epithelium-like cell under corneal tissue in vitro . SCI CHINA SER C 50, 101–110 (2007). https://doi.org/10.1007/s11427-007-0006-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0006-4

Keywords

Navigation