Skip to main content
Log in

Expression of Pdx-1 in bone marrow mesenchymal stem cells promotes differentiation of islet-like cells in vitro

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (BMSCs) have the ability of self-renewal and multi-directional differentiation. Recent reports showed that BMSCs could differentiate into endocrine cells of pancreas. However, the differentiation is not efficient enough to produce insulin-producing cells for the future therapeutic use. Pdx-1 is a crucial regulator for pancreatic development. Therefore we constructed a eukaryotic expression vector containing Pdx-1 to determine the effect of Pdx-1 expression on differentiation of BMSCs in vitro. The results showed that BMSCs could self-assemble to form functional pancreatic islet-like structures after differentiation in vitro. The proportion of insulin-producing cells differentiated from Pdx-1+BMSCs was 28.23%±2.56%, higher than that from BMSCs transfected with vacant vector and Pdx-1 BMSCs (7.23%±1.56% and 4.08%±2.69% respectively) by flow cytometry. Immunocytochemical examination also testified the expression of multiple β-cells-specific genes such as insulin, glucagons, somatostatin in differentiated BMSCs. The results also revealed that the expressions of genes mentioned above in Pdx-1+BMSCs were higher than that in Pdx-1BMSCs, which was confirmed by Western blotting analysis and RT-PCR. Glucose-induced insulin secretion from Pdx-1+BMSCs in 5mmol/L and 25mmol/L glocuse was (56.61±4.82) µU/mL and (115.29±2.56) µU/mL respectively, which were much higher than those from Pdx-1BMSCs((25.53±6.49) µU/mL and (53.26±7.56) µU/mL respectively). Grafted animals were able to maintain their body weight and survive for relatively longer periods of time than hyperglycemic sham-grafted controls, which demonstrated an overall beneficial effect of the grafted cells on the health of the animals. These findings thus suggested that exogenous expression of Pdx-1 should provide a promising approach for efficiently producing islet-like cells from BMSCs for the future therapeutic use in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shapiro A M, Lakey J R, Ryan E A, Korbutt G S, Toth E, Warnock G L, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med, 2000, 343(4): 230–238

    Article  PubMed  CAS  Google Scholar 

  2. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 2001, 292(5520): 1389–1394

    Article  PubMed  CAS  Google Scholar 

  3. Soria B, Roche E, Berna G, Leon-Quinto T, Reig J A, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycaemia in streptozocin-induced diabetic mice. Diabetes, 2000, 49(2): 157–162

    PubMed  CAS  Google Scholar 

  4. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki K L, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes, 2001, 50(8): 1691–1697

    PubMed  CAS  Google Scholar 

  5. Segev H, Fishman B, Ziskind A, et al. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells, 2004, 22(3): 265–274

    Article  PubMed  CAS  Google Scholar 

  6. Kopen G C, Prockop D J, Phinney D G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999, 96(19): 10711–10716

    Article  PubMed  CAS  Google Scholar 

  7. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells esponsible for postnatal vasculogenesis in physiological and pathological eovascularization. Circ Res, 1999, 85(3): 221–228

    PubMed  CAS  Google Scholar 

  8. Gussoni E, Soneoka Y, Strickland C D, Buzney E A, Khan M K, Flint A F, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999, 401(6751): 390–394

    PubMed  CAS  Google Scholar 

  9. Schwartz R E, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002, 109(10): 1291–1302

    Article  PubMed  CAS  Google Scholar 

  10. Zorina T D, Subbotin V M, Bertera S, Alexander A M, Haluszczak C, Gambrell B, et al. Recovery of the endogenous beta cell function in the NOD model of autoimmune diabetes. Stem Cells, 2003, 21(4): 377–388

    Article  PubMed  Google Scholar 

  11. Ianus A, Holz G G, Theise N D, Hussain M A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest, 2003, 111(6): 843–850

    Article  PubMed  CAS  Google Scholar 

  12. Oh S H, Muzzonigro T M, Bae S H, LaPlante J M, Hatch H M, Petersen B E. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest, 2004, 84(5): 607–617

    Article  PubMed  CAS  Google Scholar 

  13. Jahr H, Bretzel R G. Insulin-positive cells in vitro generated from rat bone marrow stromal cells. Transplant Proc, 2003, 35(6): 2140–2141

    Article  PubMed  CAS  Google Scholar 

  14. Jia Y J, Zhong L, Song J H, Luo F, Sun J P, Yang Y J. Rat bone marrow mesenchymal stem cells transdifferentiate into islet-secreting cells in vitro. Chin J Contemp Pediatr, 2003, 5(5): 393–397

    Google Scholar 

  15. Tang D Q, Cao L Z, Burkhardt B R, Xia C Q, Litherland S A, Atkinson M A, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes, 2004, 53(7): 1721–1732

    PubMed  CAS  Google Scholar 

  16. Jonsson J, Carlsson L, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 1994, 371(6498): 606–609

    Article  PubMed  CAS  Google Scholar 

  17. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-Cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev, 1998, 12(12): 1763–1768

    PubMed  CAS  Google Scholar 

  18. Yoshida S, Kajimoto Y, Yasuda T, Watada H, Fujitani Y, Kosaka H, et al. Pdx-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes, 2002, 51(8): 2505–2513

    PubMed  CAS  Google Scholar 

  19. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med, 2000, 6(5): 568–572

    Article  PubMed  CAS  Google Scholar 

  20. Miyazaki S, Yamato E, Miyazaki J. Regulated expression of pdx-1 promoted in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes, 2004, 53(4): 1030–1037

    PubMed  CAS  Google Scholar 

  21. Moritoh Y, Yamato E, Yasui Y, Miyazaki S, Miyazaki J. Analysis of insulin-producing cells during in vitro differentiation from Feeder-free embryonic stem cells. Diabetes, 2003, 52(5): 1163–1168

    PubMed  CAS  Google Scholar 

  22. Yang L, Li S, Hatch H, Ahrens K, Comelius J G, Petersen B E, et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA, 2002, 99(12): 8078–8083

    Article  PubMed  CAS  Google Scholar 

  23. Bonner-Weir S, Taneja M, Weir G C, Tatarkiewicz K, Song K H, Sharma A, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA, 2000, 97(14): 7999–8004

    Article  PubMed  CAS  Google Scholar 

  24. Ramiya V K, Maraist M, Arfors K E, Schatz D A, Peck A B, Cornelius J G Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med, 2000, 6(3): 278–282

    Article  PubMed  CAS  Google Scholar 

  25. Suzuki A, Nakauchi H, Taniguchi H. Glucagon-like peptide 1(1–37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci USA, 2003, 100(9): 5034–5039

    Article  PubMed  CAS  Google Scholar 

  26. Otonkoski T, Beattie G M, Mally M I, Ricordi C, Hayek A. Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest, 1993, 92(3): 1459–1466

    Article  PubMed  CAS  Google Scholar 

  27. Sjoholm A, Korsgren O, Andersson A. Polyamine requirements in nicotinamide-stimulated beta-cell differentiation in fetal porcine islet-like cell clusters. Endocrinology, 1994, 135(4): 1559–1565

    Article  PubMed  CAS  Google Scholar 

  28. Lechner A, Yang Y G, Blacken R A, Wang L, Nolan A L, Habener J F. No evidence for significant transdifferentiation of bone marrow into pancreatic β-cells in vivo. Diabetes, 2004, 53(3): 616–623

    PubMed  CAS  Google Scholar 

  29. Rajagopal J, Anderson W J, Kume S, Martinez O I, Melton D A. Insulin staining of ES cell progeny from insulin uptake. Science, 2003, 299(5605): 363

    PubMed  Google Scholar 

  30. Michele A, Domenick, M D, Suzanne T, et al. Impact of bone marrow transplantation on Type I diabetes. World Journal of Surgery, 2001, 25(4): 474–480

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Yanjie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Yang, Y., Wang, X. et al. Expression of Pdx-1 in bone marrow mesenchymal stem cells promotes differentiation of islet-like cells in vitro . SCI CHINA SER C 49, 480–489 (2006). https://doi.org/10.1007/s11427-006-2016-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-006-2016-z

Keywords

Navigation