Skip to main content
Log in

Aldehyde oxidase mediated enantioselective metabolic health risk of dinotefuran

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chiral pollutants often pose significant differential environmental health risks. In this study, the biotransformation of chiral dinotefuran (DIN) and its enantioselective metabolic toxicity mechanisms have been systemically investigated. Firstly, reversed-phase chromatography-high resolution mass spectrometry was developed to quantify the content of DIN R/S chiral enantiomer with pg level sensitivity, revealing a lower elimination rate constant (Ke) of S-DIN (0.730 h−1) than R-DIN (0.746 h−1). Secondly, the interaction mechanism between DIN metabolism and important endogenous bioactive molecules, such as aldehyde oxidase (AOX) and neurotransmitters, was revealed. The DIN nitro-group was converted into a guanidine group by the reducing site of nearby flavin adenine dinucleotide (FAD) in AOX with the preferred higher affinity of S-configuration. Meanwhile, the endogenous tryptophan (Trp) aldehyde metabolic intermediate, 5-hydroxyindoleacetaldehyde (5-HIAL), provides a persistent electron donor for DIN reduction via the oxidation-catalyzed site in AOX, resulting in remarkable up-regulation of monoamine neurotransmitters such as serotonin and dopamine. Thirdly, the higher level of neurotransmitters further mediated dysregulation of oxylipin homeostasis via the serotonergic pathway, where S-DIN exhibited more pronounced liver lipid damage and environmental health risk with the accumulated lipid biomarkers, oxidized triglyceride (OxTG) and oxidized sphingomyelin (OxSM). This study elucidates the AOX-mediated enantioselectivity metabolic pathway of DIN, providing a new analytical method for chiral pollutants and paves the way for their health risk assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang FHM, Lenzen M, McBratney A, Maggi F. Nat Geosci, 2021, 14: 206–210

    Article  CAS  Google Scholar 

  2. Zhang Q, Fu L, Cang T, Tang T, Guo M, Zhou B, Zhu G, Zhao M. Environ Sci Technol, 2022, 56: 1104–1112

    Article  CAS  PubMed  Google Scholar 

  3. Xu L, Guo L, Wang Z, Xu X, Zhang S, Wu X, Kuang H, Xu C. Angew Chem Int Ed, 2020, 59: 16218–16224

    Article  CAS  Google Scholar 

  4. Chen Z, Yao X, Dong F, Duan H, Shao X, Chen X, Yang T, Wang G, Zheng Y. Environ Int, 2019, 130: 104854–110462

    Article  CAS  PubMed  Google Scholar 

  5. Di S, Qi P, Wu S, Wang Z, Zhao H, Zhao X, Wang X, Xu H, Wang X. Environ Pollution, 2021, 269: 116191–116200

    Article  CAS  Google Scholar 

  6. US Environmental Protection Agency. Dinotefuran: Human Health Draft Risk Assessment for Registration Review (EPA-HQ-OPP-2011-0920-0620). 2017

  7. Liu T, Chen D, Li Y, Wang X, Wang F. J Agric Food Chem, 2018, 66: 4531–4540

    Article  CAS  PubMed  Google Scholar 

  8. Lu C, Chang CH, Palmer C, Zhao M, Zhang Q. Environ Sci Technol, 2018, 52: 3175–3184

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Yi X, Xie L, Liu H, Tian D, Yan B, Li D, Li H, Huang M, Ying GG. Environ Int, 2021, 156: 106650–106658

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Goulson D, Chen L, Zhang J, Zhao W, Jin Y, Yang S, Li Y, Zhou J. Environ Sci Technol, 2020, 54: 5021–5030

    Article  CAS  PubMed  Google Scholar 

  11. Chen D, Zhang Y, Lv B, Liu Z, Han J, Li J, Zhao Y, Wu Y. Environ Int, 2020, 135: 105399–105411

    Article  CAS  PubMed  Google Scholar 

  12. Zhang T, Song S, Bai X, He Y, Zhang B, Gui M, Kannan K, Lu S, Huang Y, Sun H. Environ Int, 2019, 132: 105114–105122

    Article  CAS  PubMed  Google Scholar 

  13. Ueyama J, Harada KH, Koizumi A, Sugiura Y, Kondo T, Saito I, Kamijima M. Environ Sci Technol, 2015, 49: 14522–14528

    Article  CAS  PubMed  Google Scholar 

  14. Xu L, Xu X, Guo L, Wang Z, Wu X, Kuang H, Xu C. Environ Sci Technol, 2021, 55: 7541–7550

    Article  CAS  PubMed  Google Scholar 

  15. Casida JE. Annu Rev Entomol, 2018, 63: 125–144

    Article  CAS  PubMed  Google Scholar 

  16. Li S, Cao Y, Pan Q, Xiao Y, Wang Y, Wang X, Li X, Li Q, Tang X, Ran B. Ecotoxicol Environ Saf, 2021, 224: 112690–112700

    Article  CAS  PubMed  Google Scholar 

  17. Xie Y, Hou X. J Agric Food Chem, 2021, 69: 638–645

    Article  CAS  PubMed  Google Scholar 

  18. Dong Z, Li T, Wan Y, Sun Y, Hu J. Environ Sci Technol, 2020, 54: 938–946

    Article  CAS  PubMed  Google Scholar 

  19. Ji C, Tanabe P, Shi Q, Qian L, McGruer V, Magnuson JT, Wang X, Gan J, Gadepalli RS, Rimoldi J, Schlenk D. Environ Sci Technol, 2021, 55: 9087–9096

    Article  CAS  PubMed  Google Scholar 

  20. Tian S, Yan S, Meng Z, Sun W, Yan J, Huang S, Wang Y, Zhou Z, Diao J, Li L, Zhu W. Environ Sci Technol, 2022, 56: 17890–17901

    Article  CAS  PubMed  Google Scholar 

  21. Coelho C, Foti A, Hartmann T, Santos-Silva T, Leimkühler S, Romão MJ. Nat Chem Biol, 2015, 11: 779–783

    Article  CAS  PubMed  Google Scholar 

  22. Li R, Pan X, Wang Q, Tao Y, Chen Z, Jiang D, Wu C, Dong F, Xu J, Liu X, Wu X, Zheng Y. Environ Sci Technol, 2019, 53: 13657–13665

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Dong F, Yi S, Zhu Y, Zhou J, Sun B, Shan G, Feng J, Zhu L. Environ Sci Technol, 2020, 54: 4932–4941

    Article  CAS  PubMed  Google Scholar 

  24. Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC. Environ Health Perspect, 2016, 124: 1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Faÿs F, Palazzi P, Zeman F, Hardy EM, Schaeffer C, Rousselle C, Beausoleil C, Appenzeller BMR. Environ Sci Technol, 2023, 57: 7336–7345

    Article  PubMed  Google Scholar 

  26. Wang Y, Han Y, Xie Y, Xu P, Li W. Chemosphere, 2018, 211: 591–599

    Article  CAS  PubMed  Google Scholar 

  27. Hao W, Hu X, Zhu F, Chang J, Li J, Li W, Wang H, Guo B, Li J, Xu P, Zhang Y. Environ Sci Technol, 2018, 52: 8830–8837

    Article  CAS  PubMed  Google Scholar 

  28. Kanne DB, Dick RA, Tomizawa M, Casida JE. Chem Res Toxicol, 2005, 18: 1479–1484

    Article  CAS  PubMed  Google Scholar 

  29. Geng N, Ren X, Gong Y, Zhang H, Wang F, Xing L, Cao R, Xu J, Gao Y, Giesy JP, Chen J. Environ Int, 2019, 133: 105231–105241

    Article  CAS  PubMed  Google Scholar 

  30. Xu L, Xu X, Wu X, Kuang H, Xu C. Environ Sci Technol, 2022, 56: 1841–1853

    Article  CAS  PubMed  Google Scholar 

  31. Liu S, Fu S, Wang G, Cao Y, Li L, Li X, Yang J, Li N, Shan Y, Cao Y, Ma Y, Dong M, Liu Q, Jiang H. Cell Metab, 2021, 33: 1974–1987.e9

    Article  CAS  PubMed  Google Scholar 

  32. Broderick JB, Duffus BR, Duschene KS, Shepard EM. Chem Rev, 2014, 114: 4229–4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mahmoodi N, Harijan RK, Schramm VL. J Am Chem Soc, 2020, 142: 14222–14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Villanueva JA, Halsted CH. Hepatology, 2004, 39: 1303–1310

    Article  CAS  PubMed  Google Scholar 

  35. Agus A, Planchais J, Sokol H. Cell Host Microbe, 2018, 23: 716–724

    Article  CAS  PubMed  Google Scholar 

  36. Martínez E, Campos-Gómez J. Nat Commun, 2016, 7: 13823–13832

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xiong CF, Zhu QF, Chen YY, He DX, Feng YQ. Anal Chem, 2021, 93: 9904–9911

    Article  CAS  PubMed  Google Scholar 

  38. Smith WL, Urade Y, Jakobsson PJ. Chem Rev, 2011, 111: 5821–5865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O’Donnell VB, Aldrovandi M, Murphy RC, Krönke G. Sci Signal, 2019, 12: eaau2293

    Article  PubMed  Google Scholar 

  40. Sun Z, Cao H, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G. Environ Pollut, 2021, 268: 115635–115645

    Article  CAS  PubMed  Google Scholar 

  41. Ng J, Papandreou A, Heales SJ, Kurian MA. Nat Rev Neurol, 2015, 11: 567–584

    Article  CAS  PubMed  Google Scholar 

  42. Xu P, Huang S, Zhang H, Mao C, Zhou XE, Cheng X, Simon IA, Shen DD, Yen HY, Robinson CV, Harpsøe K, Svensson B, Guo J, Jiang H, Gloriam DE, Melcher K, Jiang Y, Zhang Y, Xu HE. Nature, 2021, 592: 469–473

    Article  CAS  PubMed  Google Scholar 

  43. Wiley CD, Sharma R, Davis SS, Lopez-Dominguez JA, Mitchell KP, Wiley S, Alimirah F, Kim DE, Payne T, Rosko A, Aimontche E, Deshpande SM, Neri F, Kuehnemann C, Demaria M, Ramanathan A, Campisi J. Cell Metab, 2021, 33: 1124–1136.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cannon Homaei S, Barone H, Kleppe R, Betari N, Reif A, Haavik J. Neurosci Biobehaval Rev, 2022, 132: 838–856

    Article  CAS  Google Scholar 

  45. Wert-Carvajal C, Reneaux M, Tchumatchenko T, Clopath C. Cell Rep, 2022, 39: 110645–110654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yue Q, Wang K, Guan M, Zhao Z, Li X, Yu P, Mao L. Angew Chem Int Ed, 2022, 61: e202117596

    Article  CAS  Google Scholar 

  47. Yoneda N, Takada T, Hirano T, Yanai S, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Tabuchi Y, Hoshi N. J Vet Med Sci, 2018, 80: 634–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hou G, Zhang R, Hao X, Liu C. J Hazard Mater, 2017, 333: 32–41

    Article  CAS  PubMed  Google Scholar 

  49. Mota C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ. Coord Chem Rev, 2018, 368: 35–59

    Article  CAS  Google Scholar 

  50. Chen P, Yang J, Wang R, Xiao B, Liu Q, Sun B, Wang X, Zhu L. Sci Total Environ, 2022, 809: 151103–151112

    Article  CAS  PubMed  Google Scholar 

  51. Hille R, Hall J, Basu P. Chem Rev, 2014, 114: 3963–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferreira P, Cerqueira NMFSA, Fernandes PA, Romão MJ, Ramos MJ. ACS Catal, 2020, 10: 9276–9286

    Article  CAS  Google Scholar 

  53. Terao M, Garattini E, Romão MJ, Leimkühler S. J Biol Chem, 2020, 295: 5377–5389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhen H, Teng Q, Mosley JD, Collette TW, Yue Y, Bradley PM, Ekman DR. Environ Sci Technol, 2021, 55: 8180–8190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Harayama T, Riezman H. Nat Rev Mol Cell Biol, 2018, 19: 281–296

    Article  CAS  PubMed  Google Scholar 

  56. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Cell, 2017, 171: 273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sies H, Jones DP. Nat Rev Mol Cell Biol, 2020, 21: 363–383

    Article  CAS  PubMed  Google Scholar 

  58. Shen Y, Xie G, Lin S, Zhu L, Zhang H, Yang Z, Cai Z. Sci Total Environ, 2022, 824: 153761–153769

    Article  CAS  PubMed  Google Scholar 

  59. Cheng X, Geng F, Pan M, Wu X, Zhong Y, Wang C, Tian Z, Cheng C, Zhang R, Puduvalli V, Horbinski C, Mo X, Han X, Chakravarti A, Guo D. Cell Metab, 2020, 32: 229–242.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22276076, 22306074, 22361132536, 22236002), and the Fundamental Research Funds for the Central Universities (JUSRP622032), and the Jiangsu Association for Science and Technology Youth Science and Technology Talent Support Project (TJ-2021-049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Xu, X., Kuang, H. et al. Aldehyde oxidase mediated enantioselective metabolic health risk of dinotefuran. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-2007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-023-2007-9

Navigation