Skip to main content
Log in

Reversible isomerization of donor-acceptor Stenhouse adduct derivatives in water through dendritic confinement

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Modulating reversible isomerization of hydrophobic dyes in aqueous solutions is greatly desired. Here we report on reversible isomerization of solvatochromic donor-acceptor Stenhouse adducts (DASAs) in water through the confinement from dendritic oligoethylene glycols (OEGs). Dendronization of DASAs with dendritic OEGs affords them characteristic thermoresponsiveness. These dendronized DASAs spontaneously isomerize in water from hydrophobic linear state into hydrophilic cyclic state at room temperature due to the strong hydration. However, hydrophobic microenvironment through thermally dehydration and collapse of the dendritic OEGs at elevated temperatures confines hydration of the DASA moieties and mediates their interactions with the collapsed hydrophobic OEG domains, affording their isomerization recovery in water efficiently from the hydrophilic cyclic state into the hydrophobic linear state. The confinement-mediated reversible isomerization of DASA moieties in water can be repeated through alternative photo-irradiation and thermal dehydrations, exhibiting excellent fatigue resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brivanlou AH, Darnell, Jr. JE. Brivanlou AH, Darnell Jr. JE. Science, 2002, 295: 813–818.

    Article  CAS  PubMed  Google Scholar 

  2. Brivanlou AH, Darnell, Jr. JE. Brivanlou AH, Darnell Jr. JE. Science, 2002, 295: No. 5556: 813–818

    Article  CAS  PubMed  Google Scholar 

  3. Corra S, Bakić MT, Groppi J, Baroncini M, Silvi S, Penocchio E, Esposito M, Credi A. Nat Nanotechnol, 2022, 17: 746–751

    Article  CAS  PubMed  Google Scholar 

  4. Minkin VI. Chem Rev, 2004, 104: 2751–2776

    Article  CAS  PubMed  Google Scholar 

  5. Cheng HB, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J. Adv Mater, 2022, 34: 2108289

    Article  CAS  Google Scholar 

  6. Chatterjee S, Molla S, Ahmed J, Bandyopadhyay S. Chem Commun, 2023, 59: 12685–12698

    Article  CAS  Google Scholar 

  7. Molla MR, Rangadurai P, Antony L, Swaminathan S, de Pablo JJ, Thayumanavan S. Nat Chem, 2018, 10: 659–666

    Article  CAS  PubMed  Google Scholar 

  8. Di Martino M, Sessa L, Diana R, Piotto S, Concilio S. Molecules, 2023, 28: 3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Chem Soc Rev, 2023, 52: 8245–8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiong X, Sun F, Gao A, Wang Z, Duan Y, Yao Z, He C, Han R, Deng X, Zheng Y, Wang D. Chem Eng J, 2022, 450: 138090

    Article  CAS  Google Scholar 

  11. Feringa BL. Angew Chem Int Ed, 2017, 56: 11060–11078

    Article  CAS  Google Scholar 

  12. Kassem S, Lee ATL, Leigh DA, Marcos V, Palmer LI, Pisano S. Nature, 2017, 549: 374–378

    Article  CAS  PubMed  Google Scholar 

  13. Broichhagen J, Frank JA, Trauner D. Acc Chem Res, 2015, 48: 1947–1960

    Article  CAS  PubMed  Google Scholar 

  14. Kobauri P, Dekker FJ, Szymanski W, Feringa BL. Angew Chem Int Ed, 2023, 62: e202300681

    Article  CAS  Google Scholar 

  15. Li Z, Zeng X, Gao C, Song J, He F, He T, Guo H, Yin J.. Coordin Chem Rev, 2023, 497: No. 15: 215451

    Article  CAS  Google Scholar 

  16. Sun F, Wang D. J Mater Chem C, 2022, 10: 13700–13716

    Article  CAS  Google Scholar 

  17. Kobayashi Y, Abe J. Chem Soc Rev, 2022, 51: 2397–2415

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Angew Chem Int Ed, 2022, 61: e202205758

    Article  CAS  Google Scholar 

  19. Li M, Zhu WH. Acc Chem Res, 2022, 55: 3136–3149

    Article  CAS  PubMed  Google Scholar 

  20. Lerch MM, Szymański W, Feringa BL. Chem Soc Rev, 2018, 47: 1910–1937

    Article  CAS  PubMed  Google Scholar 

  21. Helmy S, Leibfarth FA, Oh S, Poelma JE, Hawker CJ, Read de Alaniz J. J Am Chem Soc, 2014, 136: 8169–8172

    Article  CAS  PubMed  Google Scholar 

  22. Helmy S, Oh S, Leibfarth FA, Hawker CJ, Read de Alaniz J. J Org Chem, 2014, 79: 11316–11329

    Article  CAS  PubMed  Google Scholar 

  23. Hemmer JR, Poelma SO, Treat N, Page ZA, Dolinski ND, Diaz YJ, Tomlinson W, Clark KD, Hooper JP, Hawker C, Read de Alaniz J. J Am Chem Soc, 2016, 138: 13960–13966

    Article  CAS  PubMed  Google Scholar 

  24. Lerch MM, Hansen MJ, Velema WA, Szymanski W, Feringa BL. Nat Commun, 2016, 7: 12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hemmer JR, Page ZA, Clark KD, Stricker F, Dolinski ND, Hawker CJ, Read de Alaniz J. J Am Chem Soc, 2018, 140: 10425–10429

    Article  CAS  PubMed  Google Scholar 

  26. Mallo N, Foley ED, Iranmanesh H, Kennedy ADW, Luis ET, Ho J, Harper JB, Beves JE. Chem Sci, 2018, 9: 8242–8252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Donato M, Lerch MM, Lapini A, Laurent AD, Iagatti A, Bussotti L, Ihrig SP, Medved’ M, Jacquemin D, Szymański W, Buma WJ, Foggi P, Feringa BL. J Am Chem Soc, 2017, 139: 15596–15599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lerch MM, Di Donato M, Laurent AD, Medved’ M, Iagatti A, Bussotti L, Lapini A, Buma WJ, Foggi P, Szymański W, Feringa BL. Angew Chem Int Ed, 2018, 57: 8063–8068

    Article  CAS  Google Scholar 

  29. Zulfikri H, Koenis MAJ, Lerch MM, Di Donato M, Szymański W, Filippi C, Feringa BL, Buma WJ. J Am Chem Soc, 2019, 141: 7376–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stricker F, Sanchez DM, Raucci U, Dolinski ND, Zayas MS, Meisner J, Hawker CJ, Martínez TJ, Read de Alaniz J. Nat Chem, 2022, 14: 942–948

    Article  CAS  PubMed  Google Scholar 

  31. Dubuis S, Dellai A, Courdurié C, Owona J, Kalafatis A, Vellutini L, Genin E, Rodriguez V, Castet F. J Am Chem Soc, 2023, 145: 10861–10871

    Article  CAS  PubMed  Google Scholar 

  32. Stricker F, Peterson J, Sandlass SK, de Tagyos A, Sroda M, Seshadri S, Gordon MJ, Read de Alaniz J. Chem, 2023, 9: 1994–2005

    Article  CAS  Google Scholar 

  33. Sandlass S, Stricker F, Fragoso D, de Alaniz JR, Gordon MJ. J PhotoChem PhotoBiol A-Chem, 2023, 444: 114964

    Article  CAS  Google Scholar 

  34. Sun F, Xiong X, Gao A, Duan Y, Mao L, Gu L, Wang Z, He C, Deng X, Zheng Y, Wang D. Chem Eng J, 2022, 427: 132037

    Article  CAS  Google Scholar 

  35. Rifaie-Graham O, Ulrich S, Galensowske NFB, Balog S, Chami M, Rentsch D, Hemmer JR, Read de Alaniz J, Boesel LF, Bruns N. J Am Chem Soc, 2018, 140: 8027–8036

    Article  CAS  PubMed  Google Scholar 

  36. Chen Q, Diaz YJ, Hawker MC, Martinez MR, Page ZA, Xiao-An Zhang S, Hawker CJ, Read de Alaniz J. Macromolecules, 2019, 52: 4370–4375

    Article  CAS  Google Scholar 

  37. Lee J, Sroda MM, Kwon Y, El-Arid S, Seshadri S, Gockowski LF, Hawkes EW, Valentine MT, Read de Alaniz J. ACS Appl Mater Interfaces, 2020, 12: 54075–54082

    Article  CAS  PubMed  Google Scholar 

  38. Mao L, Wang Z, Duan Y, Xiong C, He C, Deng X, Zheng Y, Wang D. ACS Nano, 2021, 15: 10384–10392

    Article  CAS  PubMed  Google Scholar 

  39. Hu C, Sun Y, van Wissen G, Peng Y, Pich A. Chem Mater, 2022, 34: 4774–4784

    Article  CAS  Google Scholar 

  40. Dong Y, Ling Y, Wang D, Liu Y, Chen X, Zheng S, Wu X, Shen J, Feng S, Zhang J, Huang W. Sci Adv, 2022, 8: eadd1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duan Y, Song M, Sun F, Xu Y, Shi F, Wang H, Zheng Y, He C, Liu X, Wei C, Deng X, Chen L, Liu F, Wang D. Adv Sci, 2023, 10: 2207443

    Article  CAS  Google Scholar 

  42. Rifaie-Graham O, Yeow J, Najer A, Wang R, Sun R, Zhou K, Dell TN, Adrianus C, Thanapongpibul C, Chami M, Mann S, de Alaniz JR, Stevens MM. Nat Chem, 2023, 15: 110–118

    Article  CAS  PubMed  Google Scholar 

  43. Overholts AC, Granados Razo W, Robb MJ. Nat Chem, 2023, 15: 332–338

    Article  CAS  PubMed  Google Scholar 

  44. Lerch MM, Wezenberg SJ, Szymanski W, Feringa BL. J Am Chem Soc, 2016, 138: 6344–6347

    Article  CAS  PubMed  Google Scholar 

  45. Wang D, Zhao L, Zhao H, Wu J, Wagner M, Sun W, Liu X, Miao M, Zheng Y. Commun Chem, 2019, 2: 118

    Article  Google Scholar 

  46. Yu Y, Yang JM, Rebek Jr. J. Chem, 2020, 6: 1265–1274

    Article  CAS  Google Scholar 

  47. Liu W, Stoddart JF. Chem, 2021, 7: 919–947

    Article  CAS  Google Scholar 

  48. Grommet AB, Feller M, Klajn R. Nat Nanotechnol, 2020, 15: 256–271

    Article  CAS  PubMed  Google Scholar 

  49. Pesce L, Perego C, Grommet AB, Klajn R, Pavan GM. J Am Chem Soc, 2020, 142: 9792–9802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang J, Avram L, Diskin-Posner Y, Białek MJ, Stawski W, Feller M, Klajn R. J Am Chem Soc, 2022, 144: 21244–21254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gemen J, Church JR, Ruoko TP, Durandin N, Białek MJ, Weißenfels M, Feller M, Kazes M, Odaybat M, Borin VA, Kalepu R, Diskin-Posner Y, Oron D, Fuchter MJ, Priimagi A, Schapiro I, Klajn R. Science, 2023, 381: 1357–1363

    Article  CAS  PubMed  Google Scholar 

  52. Payne L, Josephson JD, Murphy RS, Wagner BD. Molecules, 2020, 25: 4928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Castagna R, Maleeva G, Pirovano D, Matera C, Gorostiza P. J Am Chem Soc, 2022, 144: 15595–15602

    Article  CAS  PubMed  Google Scholar 

  54. Mukhopadhyay S, Sarkar A, Ghoshal S, Sarkar P, Dhara K, Chattopadhyay P. J Phys Chem B, 2021, 125: 7222–7230

    Article  CAS  PubMed  Google Scholar 

  55. Saha R, Devaraj A, Bhattacharyya S, Das S, Zangrando E, Mukherjee PS. J Am Chem Soc, 2019, 141: 8638–8645

    Article  CAS  PubMed  Google Scholar 

  56. Banerjee R, Chakraborty D, Mukherjee PS. J Am Chem Soc, 2023, 145: 7692–7711

    Article  CAS  PubMed  Google Scholar 

  57. Lorenzetto T, Frigatti D, Fabris F, Scarso A. Adv Synth Catal, 2022, 364: 1776–1797

    Article  CAS  Google Scholar 

  58. van den Berg J, Boersma AJ, Poolman B. Nat Rev Microbiol, 2017, 15: 309–318

    Article  CAS  PubMed  Google Scholar 

  59. Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW. Science, 1994, 266: 1226–1229

    Article  CAS  PubMed  Google Scholar 

  60. Xu G, Zhang J, Qi M, Zhang X, Li W, Zhang A. Phys Chem Chem Phys, 2022, 24: 11848–11855

    Article  CAS  PubMed  Google Scholar 

  61. Li W, Zhang A, Chen Y, Feldman K, Wu H, Schlüter AD. Chem Commun, 2008: 5948–5950

  62. Li W, Zhang A, Schlüter AD. Chem Commun, 2008, 43: 5523–5525

    Article  Google Scholar 

  63. Li W, Zhang A, Feldman K, Walde P, Schlüter AD. Macromolecules, 2008, 41: 3659–3667

    Article  CAS  Google Scholar 

  64. Junk M, Li W, Schlüter A, Wegner G, Spiess H, Zhang A, Hinderberger D. Angew Chem Int Ed, 2010, 49: 5683–5687

    Article  CAS  Google Scholar 

  65. Yao Y, Wu JH, Cao SJ, Xu BY, Yan JT, Wu D, Li W, Zhang A. Chin J Polym Sci, 2020, 38: 1164–1170

    Article  CAS  Google Scholar 

  66. Yao Y, Cao S, Yang Q, Zhang A, Li W. ACS Appl Bio Mater, 2022, 5: 5377–5385

    Article  CAS  PubMed  Google Scholar 

  67. Yao Y, Yang J, Li W, Zhang A. Polym Chem, 2022, 13: 5404–5411

    Article  CAS  Google Scholar 

  68. Xu G, Liu K, Xu B, Yao Y, Li W, Yan J, Zhang A. Macromol Rapid Commun, 2020, 41: 2000325

    Article  CAS  Google Scholar 

  69. Yan J, Liu K, Li W, Shi H, Zhang A. Macromolecules, 2016, 49: 510–517

    Article  CAS  Google Scholar 

  70. Wang F, Zhou C, Liu K, Yan J, Li W, Masuda T, Zhang A. Macromolecules, 2019, 52: 8631–8642

    Article  CAS  Google Scholar 

  71. Sun ZZ, Zhang YN, Qiu HY, Lu XT, Ren LX, Shen LF, Li W, Zhang A. Chin J Polym Sci, 2023, 41: 1543–1554

    Article  CAS  Google Scholar 

  72. Xu G, Zhang J, Jia R, Li W, Zhang A. Macromolecules, 2022, 55: 630–642

    Article  CAS  Google Scholar 

  73. Liu Y, Cao Y, Zhang X, Lin Y, Li W, Demir B, Searles DJ, Whittaker AK, Zhang A. ACS Nano, 2021, 15: 20067–20078

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Yao Y, Zhang Y, Wu D, Li W, Whittaker AK, Zhang A. Macromolecules, 2023, 56: 3931–3944

    Article  CAS  Google Scholar 

  75. Liu L, Li W, Liu K, Yan J, Hu G, Zhang A. Macromolecules, 2011, 44: 8614–8621

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971160, 21971161, 22271183 and 22371179) and the Program for Professor of Special Appointment (Eastern Scholar TP2019039) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyan Su, Afang Zhang or Wen Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, Q., Su, X. et al. Reversible isomerization of donor-acceptor Stenhouse adduct derivatives in water through dendritic confinement. Sci. China Chem. 67, 1636–1646 (2024). https://doi.org/10.1007/s11426-023-1959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1959-x

Navigation