Skip to main content
Log in

Simultaneous acceleration of sulfur reduction and oxidation on bifunctional electrocatalytic electrodes for quasi-solid-state Zn–S batteries

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The incomplete sulfur reduction and high ZnS re-oxidation energy barrier along with severe side reactions during the battery cycling compromise the practical application of Zn–S electrochemistry. Herein, a bifunctional electrocatalytic sulfur matrix that simultaneously accelerates the sulfur reduction and ZnS oxidation is proposed to realize a highly-efficient Zn–S cell. It is revealed that the N-heteroatom hotspots are more favorable for facilitating the conversion of S to ZnS while the CoO nanocrystal substantially lowers the ZnS activation energy barrier thereby suppressing the formation of disproportionation species (e.g., \({\rm{S}}{{\rm{O}}_4}^{2 - }\)) and accumulation of inactive ZnS. Accordingly, the CoO anchored on the N-doped carbon-supported sulfur cathode delivers a high Zn2+ storage capacity of 1,172 mAh g−1 and outstanding cycling stability with a capacity retention of 71.6% after 500 cycles with a high average Coulombic efficiency of 97.8%. Simultaneously, the stable cycling of solid-state Zn–S pouch cells with an energy density of 585 \({\rm{Wh}}\,\,{\rm{k}}{{\rm{g}}^{ - 1}}_{{\rm{sulfur}}}\) is also demonstrated. Moreover, the postmortem analysis reveals that the degradation of Zn–S cells is mainly attributed to the limited reversibility of Zn anodes rather than the ZnS decomposition and/or accumulation. The approach to the bidirectional catalysis manipulated the sulfur redox provides a new perspective to realize the theoretical potentials of Zn–S cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mu Y, Li Z, Wu B, Huang H, Wu F, Chu Y, Zou L, Yang M, He J, Ye L, Han M, Zhao T, Zeng L. Nat Commun, 2023, 14: 4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shang Z, Zhang H, Wang M, Chen Q, Lu K. Nanoscale, 2022, 14: 6085–6093

    Article  CAS  PubMed  Google Scholar 

  3. Zhang N, Dong Y, Jia M, Bian X, Wang Y, Qiu M, Xu J, Liu Y, Jiao L, Cheng F. ACS Energy Lett, 2018, 3: 1366–1372

    Article  CAS  Google Scholar 

  4. Deng W, Li Z, Ye Y, Zhou Z, Li Y, Zhang M, Yuan X, Hu J, Zhao W, Huang Z, Li C, Chen H, Zheng J, Li R. Adv Energy Mater, 2021, 11: 2003639

    Article  CAS  Google Scholar 

  5. Lv Z, Tan Y, Kang Y, Yang J, Cheng X, Meng W, Zhang Y, Li CC, Zhao J, Yang Y. Sci China Chem, 2023, 66: 1537–1548

    Article  CAS  Google Scholar 

  6. Yao Q, Xiao F, Lin C, Xiong P, Lai W, Zhang J, Xue H, Sun X, Wei M, Qian Q, Zeng L, Chen Q. Battery Energy, 2023, 2: 20220065

    Article  CAS  Google Scholar 

  7. Tie Z, Niu Z. Angew Chem Int Ed, 2020, 59: 21293–21303

    Article  CAS  Google Scholar 

  8. Fang G, Zhou J, Pan A, Liang S. ACS Energy Lett, 2018, 3: 2480–2501

    Article  CAS  Google Scholar 

  9. Chen M, Zhang SC, Zou ZG, Zhong SL, Ling WQ, Geng J, Liang FA, Peng XX, Gao Y, Yu FG. Rare Met, 2023, 42: 2868–2905

    Article  CAS  Google Scholar 

  10. Li Y, Wang H, Wu T, Xie C, Yang Z, Zhang Q, Sun D, Tang Y, Fu L, Wang H. Sci China Chem, 2023, 66: 1844–1853

    Article  CAS  Google Scholar 

  11. Wang M, Zhang H, Zhang W, Chen Q, Lu K. Small Methods, 2022, 6: 2200335

    Article  CAS  Google Scholar 

  12. Hencz L, Chen H, Wu Z, Qian S, Chen S, Gu X, Liu X, Yan C, Zhang S. Exploration, 2022, 2: 20210131

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Song B, Zhang W, An B, Fu L, Lu S, Cheng Y, Chen Q, Lu K. Angew Chem Int Ed, 2023, 62: e202217009

    Article  CAS  Google Scholar 

  14. Li X, Li N, Huang Z, Chen Z, Liang G, Yang Q, Li M, Zhao Y, Ma L, Dong B, Huang Q, Fan J, Zhi C. Adv Mater, 2021, 33: 2006897

    Article  CAS  Google Scholar 

  15. Patel D, Sharma AK. Energy Fuels, 2023, 37: 10897–10914

    Article  CAS  Google Scholar 

  16. Ding Y, Shi Z, Sun Y, Wu J, Pan X, Sun J. ACS Nano, 2023, 17: 6002–6010

    Article  CAS  PubMed  Google Scholar 

  17. Guo Y, Chua R, Chen Y, Cai Y, Tang EJJ, Lim JJN, Tran TH, Verma V, Wong MW, Srinivasan M. Small, 2023, 19: 2207133

    Article  CAS  Google Scholar 

  18. Cui M, Fei J, Mo F, Lei H, Huang Y. ACS Appl Mater Interfaces, 2021, 13: 54981–54989

    Article  CAS  PubMed  Google Scholar 

  19. Cai P, Sun W, Chen J, Chen K, Lu Z, Wen Z. Adv Energy Mater, 2023, 13: 2301279

    Article  CAS  Google Scholar 

  20. Liu D, He B, Zhong Y, Chen J, Yuan L, Li Z, Huang Y. Nano Energy, 2022, 101: 107474

    Article  CAS  Google Scholar 

  21. Zhang H, Shang Z, Luo G, Jiao S, Cao R, Chen Q, Lu K. ACS Nano, 2022, 16: 7344–7351

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W, Wang M, Ma J, Zhang H, Fu L, Song B, Lu S, Lu K. Adv Funct Mater, 2023, 33: 2210899

    Article  CAS  Google Scholar 

  23. Luo LW, Zhang C, Wu X, Han C, Xu Y, Ji X, Jiang JX. Chem Commun, 2021, 57: 9918–9921

    Article  CAS  Google Scholar 

  24. Sonigara KK, Vaghasiya JV, Mayorga-Martinez CC, Pumera M. npj 2D Mater Appl, 2023, 7: 45

    Article  CAS  Google Scholar 

  25. Chang G, Liu J, Hao Y, Huang C, Yang Y, Qian Y, Chen X, Tang Q, Hu A. Chem Eng J, 2023, 457: 141083

    Article  CAS  Google Scholar 

  26. Yang M, Yan Z, Xiao J, Xin W, Zhang L, Peng H, Geng Y, Li J, Wang Y, Liu L, Zhu Z. Angew Chem Int Ed, 2022, 61: e202212666

    Article  CAS  Google Scholar 

  27. Gao R, Zhang M, Han Z, Xiao X, Wu X, Piao Z, Lao Z, Nie L, Wang S, Zhou G. Adv Mater, 2024, 36: 2303610

    Article  CAS  Google Scholar 

  28. Li H, Chuai M, Xiao X, Jia Y, Chen B, Li C, Piao Z, Lao Z, Zhang M, Gao R, Zhang B, Han Z, Yang J, Zhou G. J Am Chem Soc, 2023, 145: 22516–22526

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Wang K, Jiang K. Adv Sci, 2020, 7: 2000761

    Article  CAS  Google Scholar 

  30. Wang K, Wang J, Zhang Z, Zhang W, Fu F, Du Y. Sci China Chem, 2023, 66: 2711–2718

    Article  CAS  Google Scholar 

  31. Li J, Cheng Z, Li Z, Huang Y. Mater Horiz, 2023, 10: 2436–2444

    Article  CAS  PubMed  Google Scholar 

  32. Ma L, Ying Y, Chen S, Chen Z, Li H, Huang H, Zhao L, Zhi C. Adv Energy Mater, 2022, 12: 2201322

    Article  CAS  Google Scholar 

  33. Han Z, Gao R, Wang T, Tao S, Jia Y, Lao Z, Zhang M, Zhou J, Li C, Piao Z, Zhang X, Zhou G. Nat Catal, 2023, 6: 1073–1086

    Article  CAS  Google Scholar 

  34. Lao Z, Han Z, Ma J, Zhang M, Wu X, Jia Y, Gao R, Zhu Y, Xiao X, Yu K, Zhou G. Adv Mater, 2023, 36: 2309024

    Article  Google Scholar 

  35. Feng L, Wang S. Sci China Chem, 2023, 66: 2267–2273

    Article  CAS  Google Scholar 

  36. Zeng P, Zou H, Cheng C, Wang L, Yuan C, Liu G, Mao J, Chan T-, Wang Q, Zhang L. Adv Funct Mater, 2023, 33: 2214770

    Article  CAS  Google Scholar 

  37. Wang R, Luo C, Wang T, Zhou G, Deng Y, He Y, Zhang Q, Kang F, Lv W, Yang QH. Adv Mater, 2020, 32: 2000315

    Article  CAS  Google Scholar 

  38. Shi Z, Ding Y, Zhang Q, Sun J. Adv Energy Mater, 2022, 12: 2201056

    Article  CAS  Google Scholar 

  39. Zhou X, Yu Z, Yao Y, Jiang Y, Rui X, Liu J, Yu Y. Adv Mater, 2022, 34: 2200479

    Article  CAS  Google Scholar 

  40. Yan Z, Liang Y, Hua W, Zhang XG, Lai W, Hu Z, Wang W, Peng J, Indris S, Wang Y, Chou SL, Liu H, Dou SX. ACS Nano, 2020, 14: 10284–10293

    Article  CAS  PubMed  Google Scholar 

  41. Li J, Zhang H, Samarakoon W, Shan W, Cullen DA, Karakalos S, Chen M, Gu D, More KL, Wang G, Feng Z, Wang Z, Wu G. Angew Chem Int Ed, 2019, 58: 18971–18980

    Article  CAS  Google Scholar 

  42. Wu S, Wang Y, Na S, Chen C, Yu T, Wang H, Zang H. J Mater Chem A, 2017, 5: 17352–17359

    Article  CAS  Google Scholar 

  43. Huang Z, Song B, Zhang H, Feng F, Zhang W, Lu K, Chen Q. Adv Funct Mater, 2021, 31: 2100666

    Article  CAS  Google Scholar 

  44. Kumar R, Sahoo S, Tan WK, Kawamura G, Matsuda A, Kar KK. J Energy Storage, 2021, 40: 102724

    Article  Google Scholar 

  45. Zhang J, Zhao Z, Xia Z, Dai L. Nat Nanotech, 2015, 10: 444–452

    Article  CAS  Google Scholar 

  46. Wang J, Wu L, Shen L, Zhou Q, Chen Y, Wu J, Wen Y, Zheng J. J Colloid Interface Sci, 2023, 640: 415–422

    Article  CAS  PubMed  Google Scholar 

  47. Wang P, Zhang Z, Song N, An X, Liu J, Feng J, Xi B, Xiong S. CCS Chem, 2023, 5: 397–411

    Article  Google Scholar 

  48. Zhou T, Wan H, Liu M, Wu Q, Fan Z, Zhu Y. Mater Today Energy, 2022, 27: 101025

    Article  CAS  Google Scholar 

  49. Yang X, Li C, Sun Z, Yang S, Shi Z, Huang R, Liu B, Li S, Wu Y, Wang M, Su Y, Dou S, Sun J. Adv Mater, 2021, 33: 2105951

    Article  CAS  Google Scholar 

  50. Chen MJ, Zhao QY, Wang HR, Long T, Ma X, Wu Q, Zhou WX, Wu XW, Zeng XX. Sci China Chem, 2023, 66: 289–296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Scientific Foundation of China (22109001, 22208335), Postdoctoral Fellowship Program of CPSF (GZB20230950), and the Hefei National Laboratory for Physical Sciences at the Microscale (KF2020106). We also thank the support provided by the Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Song, Pengfei Cao or Ke Lu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2023_1956_MOESM1_ESM.pdf

Supplementary Information: Simultaneous Acceleration of Sulfur Reduction and Oxidation on Bifunctional Electrocatalytic Electrodes for Quasi-Solid-State Zn–S Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhang, H., Ding, T. et al. Simultaneous acceleration of sulfur reduction and oxidation on bifunctional electrocatalytic electrodes for quasi-solid-state Zn–S batteries. Sci. China Chem. 67, 1531–1538 (2024). https://doi.org/10.1007/s11426-023-1956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1956-7

Navigation