Skip to main content
Log in

Photoredox catalytic alkylarylation of alkynes with arylsulfonylacetate as bifunctional reagent

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Difunctionalization of alkynes represents a powerful and straightforward approach to the synthesis of complex molecules. However, the radical difunctionalization of alkynes mediated by bifunctional reagents remains challenging and underexplored, despite significant progress having been made in alkene difunctionalization. Here, we report a novel arylsulfonylacetate skeleton in which aryl rings are attached to acetates through SO2, serving as a powerful bifunctional reagent for the alkylarylation of alkynes via vinyl-radical intermediate under photoredox conditions. This modular bifunctional reagent enables the simultaneous incorporation of a wide range of functional groups, including (hetero)aryl ring and alkyl carboxylate into alkynes, resulting in synthetically valuable all-carbon tetrasubstituted alkene derivatives. This transformation is distinguished by its redox-neutral nature, readily accessible starting materials, compatibility with diverse functional groups and its capacity to facilitate convergent synthesis. The utility of this approach was further demonstrated by the late-stage functionalization of complex molecules and the preparation of fluorescent molecules and anti-cancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McDonald RI, Liu G, Stahl SS. Chem Rev, 2011, 111: 2981–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang C, Tang C, Jiao N. Chem Soc Rev, 2012, 41: 3464–3484

    Article  CAS  PubMed  Google Scholar 

  3. Wolfe JP. Angew Chem Int Ed, 2012, 51: 10224–10225

    Article  CAS  Google Scholar 

  4. Tang S, Liu K, Liu C, Lei A. Chem Soc Rev, 2015, 44: 1070–1082

    Article  CAS  PubMed  Google Scholar 

  5. Huple DB, Ghorpade S, Liu R. Adv Synth Catal, 2016, 358: 1348–1367

    Article  CAS  Google Scholar 

  6. Mei H, Yin Z, Liu J, Sun H, Han J. Chin J Chem, 2019, 37: 292–301

    Article  CAS  Google Scholar 

  7. Li G, Huo X, Jiang X, Zhang W. Chem Soc Rev, 2020, 49: 2060–2118

    Article  CAS  PubMed  Google Scholar 

  8. Liu W, Kong W. Org Chem Front, 2020, 7: 3941–3955

    Article  CAS  Google Scholar 

  9. Ding W, Chai J, Wang C, Wu J, Yoshikai N. J Am Chem Soc, 2020, 142: 8619–8624

    Article  CAS  PubMed  Google Scholar 

  10. Deng JR, Chan WC, Chun-Him Lai N, Yang B, Tsang CS, Chi-Bun Ko B, Lai-Fung Chan S, Wong MK. Chem Sci, 2017, 8: 7537–7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. You Y, Ge S. Angew Chem Int Ed, 2021, 60: 20684–20688

    Article  CAS  Google Scholar 

  12. Murai M, Uemura E, Hori S, Takai K. Angew Chem Int Ed, 2017, 56: 5862–5866

    Article  CAS  Google Scholar 

  13. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Egami H, Sodeoka M. Angew Chem Int Ed, 2014, 53: 8294–8308

    Article  CAS  Google Scholar 

  15. Xie J, Li J, Weingand V, Rudolph M, Hashmi ASK. Chem Eur J, 2016, 22: 12646–12650

    Article  CAS  PubMed  Google Scholar 

  16. Chalotra N, Kumar J, Naqvi T, Shah BA. Chem Commun, 2021, 57: 11285–11300

    Article  CAS  Google Scholar 

  17. Huang L, Rudolph M, Rominger F, Hashmi ASK. Angew Chem Int Ed, 2016, 55: 4808–4813

    Article  CAS  Google Scholar 

  18. Zhu C, Yue H, Maity B, Atodiresei I, Cavallo L, Rueping M. Nat Catal, 2019, 2: 678–687

    Article  CAS  Google Scholar 

  19. Hou J, Ee A, Feng W, Xu JH, Zhao Y, Wu J. J Am Chem Soc, 2018, 140: 5257–5263

    Article  CAS  PubMed  Google Scholar 

  20. Chakrasali P, Kim K, Jung YS, Kim H, Han SB. Org Lett, 2018, 20: 7509–7513

    Article  CAS  PubMed  Google Scholar 

  21. Ni B, Zhang B, Han J, Peng B, Shan Y, Niu T. Org Lett, 2020, 22: 670–674

    Article  CAS  PubMed  Google Scholar 

  22. Yasu Y, Koike T, Akita M. Angew Chem Int Ed, 2012, 51: 9567–9571

    Article  CAS  Google Scholar 

  23. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siu JC, Fu N, Lin S. Acc Chem Res, 2020, 53: 547–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong X, Klein M, Waldvogel SR, Morandi B. Angew Chem Int Ed, 2023, 62: e202213630

    Article  CAS  Google Scholar 

  26. Yin G, Mu X, Liu G. Acc Chem Res, 2016, 49: 2413–2423

    Article  CAS  PubMed  Google Scholar 

  27. Sauer GS, Lin S. ACS Catal, 2018, 8: 5175–5187

    Article  CAS  Google Scholar 

  28. Giri R, Kc S. J Org Chem, 2018, 83: 3013–3022

    Article  CAS  PubMed  Google Scholar 

  29. Li ZL, Fang GC, Gu QS, Liu XY. Chem Soc Rev, 2020, 49: 32–48

    Article  CAS  PubMed  Google Scholar 

  30. Chemler SR, Bovino MT. ACS Catal, 2013, 3: 1076–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Egami H, Sodeoka M. Angew Chem Int Ed, 2014, 53: 8294–8308

    Article  CAS  Google Scholar 

  32. Merino E, Nevado C. Chem Soc Rev, 2014, 43: 6598–6608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen JR, Yu XY, Xiao WJ. Synthesis, 2015, 47: 604–629

    Article  CAS  Google Scholar 

  34. Wu Y, Xiao Y, Yang Y, Song R, Li J. ChemCatChem, 2020, 12: 5312–5329

    Article  CAS  Google Scholar 

  35. Piers E. Pure Appl Chem, 1988, 60: 107–114

    Article  CAS  Google Scholar 

  36. Huang HM, Bellotti P, Ma J, Dalton T, Glorius F. Nat Rev Chem, 2021, 5: 301–321

    Article  CAS  PubMed  Google Scholar 

  37. Yu X, Meng QY, Daniliuc CG, Studer A. J Am Chem Soc, 2022, 144: 7072–7079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Z, Jiao L, Sun Y, He Z, Wei Z, Liao W. Angew Chem Int Ed, 2020, 59: 7266–7270

    Article  CAS  Google Scholar 

  39. Link A, Fischer C, Sparr C. Angew Chem Int Ed, 2015, 54: 12163–12166

    Article  CAS  Google Scholar 

  40. Erchinger JE, Hoogesteger R, Laskar R, Dutta S, Hümpel C, Rana D, Daniliuc CG, Glorius F. J Am Chem Soc, 2023, 145: 2364–2374

    Article  CAS  PubMed  Google Scholar 

  41. Liao LL, Cao GM, Jiang YX, Jin XH, Hu XL, Chruma JJ, Sun GQ, Gui YY, Yu DG. J Am Chem Soc, 2021, 143: 2812–2821

    Article  CAS  PubMed  Google Scholar 

  42. Li H, Neumann H, Beller M, Wu X. Angew Chem Int Ed, 2014, 53: 3183–3186

    Article  CAS  Google Scholar 

  43. Farndon JJ, Young TA, Bower JF. J Am Chem Soc, 2018, 140: 17846–17850

    Article  CAS  PubMed  Google Scholar 

  44. Wu D, Fohn NA, Bode JW. Angew Chem Int Ed, 2019, 58: 11058–11062

    Article  CAS  Google Scholar 

  45. Wu Z, Ren R, Zhu C. Angew Chem Int Ed, 2016, 55: 10821–10824

    Article  CAS  Google Scholar 

  46. Wu Z, Wang D, Liu Y, Huan L, Zhu C. J Am Chem Soc, 2017, 139: 1388–1391

    Article  CAS  PubMed  Google Scholar 

  47. Wu X, Wang M, Huan L, Wang D, Wang J, Zhu C. Angew Chem Int Ed, 2018, 57: 1640–1644

    Article  CAS  Google Scholar 

  48. Tang N, Shao X, Wang M, Wu X, Zhu C. Acta China Chem, 2019, 77: 922–926

    CAS  Google Scholar 

  49. Yu J, Wu Z, Zhu C. Angew Chem Int Ed, 2018, 57: 17156–17160

    Article  CAS  Google Scholar 

  50. Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Angew Chem Int Ed, 2020, 59: 8195–8202

    Article  CAS  Google Scholar 

  51. Zhang H, Wang M, Wu X, Zhu C. Angew Chem Int Ed, 2021, 60: 3714–3719

    Article  CAS  Google Scholar 

  52. Yu J, Zhang X, Wu X, Liu T, Zhang ZQ, Wu J, Zhu C. Chem, 2023, 9: 472–482

    Article  CAS  Google Scholar 

  53. Wu X, Zhu C. Acc Chem Res, 2020, 53: 1620–1636

    Article  CAS  PubMed  Google Scholar 

  54. Wu X, Ma Z, Feng T, Zhu C. Chem Soc Rev, 2021, 50: 11577–11613

    Article  CAS  PubMed  Google Scholar 

  55. Monos TM, McAtee RC, Stephenson CRJ. Science, 2018, 361: 1369–1373

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Noten EA, McAtee RC, Stephenson CRJ. Chem Sci, 2022, 13: 6942–6949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Allen AR, Poon JF, McAtee RC, Watson NB, Pratt DA, Stephenson CRJ. ACS Catal, 2022, 12: 8511–8526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hervieu C, Kiriia MS, Hu Y, Cuesta-Galisteo S, Merino E, Nevado C. Nat Chem, 2024, 16: doi: https://doi.org/10.1038/s41557-023-01414-8

  59. Ren X, Lu Z. Chin J Catal, 2019, 40: 1003–1019

    Article  CAS  Google Scholar 

  60. Wille U. Chem Rev, 2013, 113: 813–853

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y, Shen S, He C, Zhou Y, Zhang K, Rao B, Han T, Su Y, Duan XH, Liu L. Chem Sci, 2023, 14: 6663–6668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou Y, Zhao L, Hu M, Duan XH, Liu L. Org Lett, 2023, 25: 5268–5272

    Article  CAS  PubMed  Google Scholar 

  63. Zhang K, Wang Y, He C, Zhou Y, Wang D, Hu M, Duan XH, Liu L. Org Chem Front, 2022, 9: 5599–5605

    Article  CAS  Google Scholar 

  64. He C, Zhang K, Wang DN, Wang M, Niu Y, Duan XH, Liu L. Org Lett, 2022, 24: 2767–2771

    Article  CAS  PubMed  Google Scholar 

  65. Negishi E, Huang Z, Wang G, Mohan S, Wang C, Hattori H. Acc Chem Res, 2008, 41: 1474–1485

    Article  CAS  PubMed  Google Scholar 

  66. Li G, Huo X, Jiang X, Zhang W. Chem Soc Rev, 2020, 49: 2060–2118

    Article  CAS  PubMed  Google Scholar 

  67. McCague R, Leclercq G, Legros N, Goodman J, Blackburn GM, Jarman M, Foster AB. J Med Chem, 1989, 32: 2527–2533

    Article  CAS  PubMed  Google Scholar 

  68. Connor CE, Norris JD, Broadwater G, Willson TM, Gottardis MM, Dewhirst MW, McDonnell DP. Cancer Res, 2001, 61: 2917–2922

    CAS  PubMed  Google Scholar 

  69. Wang J, Wu XX, Cao Z, Zhang X, Wang X, Li J, Zhu C. Adv Sci, 2024, 20: e2309022

    Article  Google Scholar 

  70. Deposition number CCDC 2280320 (for 3aa–acid) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service

  71. Metternich JB, Gilmour R. J Am Chem Soc, 2015, 137: 11254–11257

    Article  CAS  PubMed  Google Scholar 

  72. Metternich JB, Gilmour R. J Am Chem Soc, 2016, 138: 1040–1045

    Article  CAS  PubMed  Google Scholar 

  73. Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Chem Rev, 2022, 122: 2650–2694

    Article  PubMed  Google Scholar 

  74. Utrilla RM, Sastre R, Catalina F, Mateo JL. J Photochem Photobiol A Chem, 1989, 46: 113–119

    Article  Google Scholar 

  75. DFT calculations revealed that the energy barrier between the E/Z isomers of alkene 3bm was found to be extremely low (less than 0.1 kcal/mol). This finding aligns with the obtained poor E/Z ratios of the generated alkenes (for details, see Supporting Information)

  76. Wu X, Fors BP, Buchwald SL. Angew Chem Int Ed, 2011, 50: 9943–9947

    Article  CAS  Google Scholar 

  77. Vorogushin AV, Huang X, Buchwald SL. J Am Chem Soc, 2005, 127: 8146–8149

    Article  CAS  PubMed  Google Scholar 

  78. Danoun G, Tlili A, Monnier F, Taillefer M. Angew Chem Int Ed, 2012, 51: 12815–12819

    Article  CAS  Google Scholar 

  79. Luo J, Zhang J. ACS Catal, 2016, 6: 873–877

    Article  CAS  Google Scholar 

  80. Zheng G, Li Y, Han J, Xiong T, Zhang Q. Nat Commun, 2015, 6: 7011–7020

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Hervieu C, Kirillova MS, Suárez T, Müller M, Merino E, Nevado C. Nat Chem, 2021, 13: 327–334

    Article  CAS  PubMed  Google Scholar 

  82. Whalley DM, Seayad J, Greaney MF. Angew Chem Int Ed, 2021, 60: 22219–22223

    Article  CAS  Google Scholar 

  83. Chen Y, Chang L, Zuo Z. Acta Chim Sin, 2019, 77: 794–802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21901199) and Xi’an Jiaotong University (7121192002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Wang, M., Wang, Y. et al. Photoredox catalytic alkylarylation of alkynes with arylsulfonylacetate as bifunctional reagent. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-023-1930-6

Navigation