Skip to main content
Log in

Remote copper-catalyzed enantioselective substitution of yne-thiophene carbonates

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Here, we describe a strategy for the copper-catalyzed asymmetric heteroarylation of yne-thiophene carbonates with indoles via remote substitution. The key to the success of this strategy lies in the design of the alkynyl group at the ortho-position of the heterocycle thiophene, enabling the formation of a triarylmethane moiety via very remote substitution. Thus, the concept of remote copper-catalyzed asymmetric transformation extends not only to yne-allylic esters but also to yne-aryl esters. The reaction readily provides a diverse array of chiral triarylmethanes with high efficiency, enantioselectivity, and excellent functional group compatibility. Moreover, facile follow-up transformations underscore their potential utility in the synthesis of various enantioenriched building blocks. Preliminary mechanistic studies support the plausibility of the remote substitution pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Miyake Y, Uemura S, Nishibayashi Y. ChemCatChem, 2009, 1: 342–356

    Article  CAS  Google Scholar 

  2. Detz RJ, Hiemstra H, van Maarseveen JH. Eur J Org Chem, 2009, 2009: 6263–6276

    Article  Google Scholar 

  3. Ding CH, Hou XL. Chem Rev, 2011, 111: 1914–1937

    Article  CAS  PubMed  Google Scholar 

  4. Nishibayashi Y. Synthesis, 2012, 2012: 489–503

    Article  Google Scholar 

  5. Zhang DY, Hu XP. Tetrahedron Lett, 2015, 56: 283–295

    Article  CAS  Google Scholar 

  6. Sakata K, Nishibayashi Y. Catal Sci Technol, 2018, 8: 12–25

    Article  CAS  Google Scholar 

  7. Roh SW, Choi K, Lee C. Chem Rev, 2019, 119: 4293–4356

    Article  CAS  PubMed  Google Scholar 

  8. Zuo L, Liu T, Chang X, Guo W. Molecules, 2019, 24: 3930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu HY, He ZT. Chin Chem Lett, 2023, 34: 108105

    Article  CAS  Google Scholar 

  10. Lu WY, Wang Y, You Y, Wang ZH, Zhao JQ, Zhou MQ, Yuan WC. J Org Chem, 2021, 86: 1779–1788

    Article  CAS  PubMed  Google Scholar 

  11. Wang T, You Y, Wang ZH, Zhao JQ, Zhang YP, Yin JQ, Zhou MQ, Cui BD, Yuan WC. Org Lett, 2023, 25: 1274–1279

    Article  CAS  PubMed  Google Scholar 

  12. Shao W, Li H, Liu C, Liu C, You S. Angew Chem Int Ed, 2015, 54: 7684–7687

    Article  CAS  Google Scholar 

  13. Shao L, Wang Y, Zhang D, Xu J, Hu X. Angew Chem Int Ed, 2016, 55: 5014–5018

    Article  CAS  Google Scholar 

  14. Xu H, Laraia L, Schneider L, Louven K, Strohmann C, Antonchick AP, Waldmann H. Angew Chem Int Ed, 2017, 56: 11232–11236

    Article  CAS  Google Scholar 

  15. Zhang K, Lu LQ, Yao S, Chen JR, Shi DQ, Xiao WJ. J Am Chem Soc, 2017, 139: 12847–12854

    Article  CAS  PubMed  Google Scholar 

  16. Li RZ, Tang H, Wan L, Zhang X, Fu Z, Liu J, Yang S, Jia D, Niu D. Chem, 2017, 3: 834–845

    Article  CAS  Google Scholar 

  17. Shemet A, Carreira EM. Org Lett, 2017, 19: 5529–5532

    Article  CAS  PubMed  Google Scholar 

  18. Zhang YC, Zhang BW, Geng RL, Song J. Org Lett, 2018, 20: 7907–7911

    Article  CAS  PubMed  Google Scholar 

  19. Zhu Q, Meng B, Gu C, Xu Y, Chen J, Lei C, Wu X. Org Lett, 2019, 21: 9985–9989

    Article  CAS  PubMed  Google Scholar 

  20. Gao X, Cheng R, Xiao YL, Wan XL, Zhang X. Chem, 2019, 5: 2987–2999

    Article  CAS  Google Scholar 

  21. Wang RQ, Shen C, Cheng X, Dong XQ, Wang CJ. Chem Commun, 2022, 58: 8552–8555

    Article  CAS  Google Scholar 

  22. Pu X, Dang QD, Yang L, Zhang X, Niu D. Nat Commun, 2022, 13: 2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hou Y, Zhang Z, Sun X, Yang Z, Luan YX, Tang P. Angew Chem, 2023, 135: e202218919

    Article  Google Scholar 

  24. Gui C, Peng Y, Zhou Y, Zheng Y, Wang H, Yan Q, Zhou H, Wang W, Chen FE. ACS Catal, 2023, 13: 13735–13742

    Article  CAS  Google Scholar 

  25. Hattori G, Matsuzawa H, Miyake Y, Nishibayashi Y. Angew Chem Int Ed, 2008, 47: 3781–3783

    Article  CAS  Google Scholar 

  26. Detz R, Delville M, Hiemstra H, van Maarseveen J. Angew Chem Int Ed, 2008, 47: 3777–3780

    Article  CAS  Google Scholar 

  27. Zhang C, Hu XH, Wang YH, Zheng Z, Xu J, Hu XP. J Am Chem Soc, 2012, 134: 9585–9588

    Article  CAS  PubMed  Google Scholar 

  28. Zhu F, Zou Y, Zhang D, Wang Y, Hu X, Chen S, Xu J, Hu X. Angew Chem Int Ed, 2014, 53: 1410–1414

    Article  CAS  Google Scholar 

  29. Wang Q, Li TR, Lu LQ, Li MM, Zhang K, Xiao WJ. J Am Chem Soc, 2016, 138: 8360–8363

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Zhang L, Geng R, Song J, Chen X, Gong L. Angew Chem Int Ed, 2019, 58: 12190–12194

    Article  CAS  Google Scholar 

  31. Guo W, Zuo L, Cui M, Yan B, Ni S. J Am Chem Soc, 2021, 143: 7629–7634

    Article  CAS  PubMed  Google Scholar 

  32. Gong F, Meng X, Lan S, Liu J, Yang S, Fang X. ACS Catal, 2022, 12: 12036–12044

    Article  CAS  Google Scholar 

  33. Wang BC, Fan T, Xiong FY, Chen P, Fang KX, Tan Y, Lu LQ, Xiao WJ. J Am Chem Soc, 2022, 144: 19932–19941

    Article  CAS  PubMed  Google Scholar 

  34. Ma JS, Lu HY, Chen YW, Zhao WC, Sun YZ, Li RP, Wang HX, Lin GQ, He ZT. Nat Synth, 2023, 2: 37–48

    Article  Google Scholar 

  35. Niu S, Luo Y, Xu C, Liu J, Yang S, Fang X. ACS Catal, 2022, 12: 6840–6850

    Article  CAS  Google Scholar 

  36. Kong HH, Zhu C, Deng S, Xu G, Zhao R, Yao C, Xiang HM, Zhao C, Qi X, Xu H. J Am Chem Soc, 2022, 144: 21347–21355

    Article  CAS  PubMed  Google Scholar 

  37. Li SJ, Huang J, He JY, Zhang RJ, Qian HD, Dai XL, Kong HH, Xu H. RSC Adv, 2020, 10: 38478–38483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J, Kong HH, Li SJ, Zhang RJ, Qian HD, Li DR, He JY, Zheng YN, Xu H. Chem Commun, 2021, 57: 4674–4677

    Article  CAS  Google Scholar 

  39. Li Z, Li D, Xiang H, Huang J, Zheng Y, Zhu C, Cui X, Pi C, Xu H. Chin Chem Lett, 2022, 33: 867–870

    Article  CAS  Google Scholar 

  40. Qian HD, Li ZH, Deng S, Yao C, Xiang HM, Xu G, Geng ZQ, Wang Z, Chen L, Liu C, Zhu C, Qi X, Xu H. J Am Chem Soc, 2022, 144: 15779–15785

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Yin L, Yao C. Chin J Org Chem, 2022, 42: 3918–3920

    Article  CAS  Google Scholar 

  42. Geng ZQ, Zhao C, Qian HD, Li SJ, Peng H, Xu H. Org Lett, 2023, 25: 4504–4509

    Article  CAS  PubMed  Google Scholar 

  43. Li X, Duan M, Yu P, Houk KN, Sun J. Nat Commun, 2021, 12: 4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rubenbauer P, Herdtweck E, Strassner T, Bach T. Angew Chem Int Ed, 2008, 47: 10106–10109

    Article  CAS  Google Scholar 

  45. Wang Z, Zhu Y, Pan X, Wang G, Liu L. Angew Chem Int Ed, 2020, 59: 3053–3057

    Article  CAS  Google Scholar 

  46. Liu M, Shen B, Liu C, Yu P, Li P. J Am Chem Soc, 2023, 145: 14562–14569

    Article  CAS  PubMed  Google Scholar 

  47. Yan Q, Duan M, Chen C, Deng Z, Wu M, Yu P, He ML, Zhu G, Houk KN, Sun J. Chem Sci, 2022, 13: 5767–5773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu S, Chan KL, Lin Z, Sun J. J Am Chem Soc, 2023, 145: 12802–12811

    Article  CAS  PubMed  Google Scholar 

  49. Sun Y, Ren Z, Yang Y, Liu Y, Lin G, He Z. Angew Chem Int Ed, 2023, 62: e202314517

    Article  CAS  Google Scholar 

  50. Liao K, Gong Y, Zhu R, Wang C, Zhou F, Zhou J. Angew Chem Int Ed, 2021, 60: 8488–8493

    Article  CAS  Google Scholar 

  51. Gong Y, Wang C, Zhou F, Liao K, Wang X, Sun Y, Zhang Y, Tu Z, Wang X, Zhou J. Angew Chem Int Ed, 2023, 62: e202301470

    Article  CAS  Google Scholar 

  52. Hattori G, Sakata K, Matsuzawa H, Tanabe Y, Miyake Y, Nishibayashi Y. J Am Chem Soc, 2010, 132: 10592–10608

    Article  CAS  PubMed  Google Scholar 

  53. Liu S, Nakajima K, Nishibayashi Y. RSC Adv, 2019, 9: 18918–18922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li RZ, Liu DQ, Niu D. Nat Catal, 2020, 3: 672–680

    Article  CAS  Google Scholar 

  55. Garcia-Roca A, Pérez-Soto R, Stoica G, Benet-Buchholz J, Maseras F, Kleij AW. J Am Chem Soc, 2023, 145: 6442–6452

    Article  CAS  PubMed  Google Scholar 

  56. Cai Q, Rao H, Li SJ, Lan Y, Ding K, Wang X. Chem, 2023, doi: https://doi.org/10.1016/j.chempr.2023.09.006

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21801087, 22201089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuiju Zhu or Hao Xu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, HD., Li, X., Yin, T. et al. Remote copper-catalyzed enantioselective substitution of yne-thiophene carbonates. Sci. China Chem. 67, 1175–1180 (2024). https://doi.org/10.1007/s11426-023-1922-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1922-5

Navigation