Skip to main content
Log in

Activity promotion of Rh1Cax/Al2O3 single-atom catalyst in 1-octene hydroformylation: a volcano curve exists between Ca adding ratio and catalytic activity

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs) are considered the best candidates for olefin hydroformylation due to their combined advantages of homogeneous and heterogeneous catalysts. Unlike conventional organo-phosphine modification, Rh SAC is modified by introducing Ca, resulting in a significant increase in activity (maximum ∼5.7-fold) and stability. Furthermore, a volcano curve between Ca addition ratio and catalytic activity is found. Introducing Ca significantly increases activity by decreasing the energy barrier, but excessive Ca decreases activity due to hindering substrate adsorption and reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Franke R, Selent D, Börner A. Chem Rev, 2012, 112: 5675–5732

    Article  CAS  PubMed  Google Scholar 

  2. Liu B, Huang N, Wang Y, Lan X, Wang T. ACS Catal, 2021, 11: 1787–1796

    Article  CAS  Google Scholar 

  3. Shang W, Qin B, Gao M, Qin X, Chai Y, Wu G, Guan N, Ma D, Li L. CCS Chem, 2023, 5: 1526–1539

    Article  CAS  Google Scholar 

  4. Tan M, Wang D, Ai P, Liu G, Wu M, Zheng J, Yang G, Yoneyama Y, Tsubaki N. Appl Catal A-Gen, 2016, 527: 53–59

    Article  CAS  Google Scholar 

  5. Gao P, Liang G, Ru T, Liu X, Qi H, Wang A, Chen FE. Nat Commun, 2021, 12: 4698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Yan L, Li C, Jiang M, Zhao Z, Hou G, Ding Y. J Catal, 2018, 368: 197–206

    Article  CAS  Google Scholar 

  7. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Acc Chem Res, 2013, 46: 1740–1748

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Zhang W, Wang S, Gao Z, Luo Z, Wang X, Zeng R, Li A, Li H, Wang M, Zheng X, Zhu J, Zhang W, Ma C, Si R, Zeng J. Nat Commun, 2016, 7: 14036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu B, Wang Y, Huang N, Lan X, Xie Z, Chen JG, Wang T. Chem, 2022, 8: 2630–2658

    Article  CAS  Google Scholar 

  10. Zheng K, Li Y, Liu B, Jiang F, Xu Y, Liu X. Angew Chem Int Ed, 2022, 61: e202210991

    Article  CAS  Google Scholar 

  11. Lin Z, Huang H, Cheng L, Hu W, Xu P, Yang Y, Li J, Gao F, Yang K, Liu S, Jiang P, Yan W, Chen S, Wang C, Tong H, Huang M, Zheng W, Wang H, Chen Q. Adv Mater, 2021, 33: e2107103

    Article  PubMed  Google Scholar 

  12. He Y, Fan J, Feng J, Luo C, Yang P, Li D. J Catal, 2015, 331: 118–127

    Article  CAS  Google Scholar 

  13. Wan Y, Yang J, Hou H, Xu S, Liu G, Hussain S, Qiao G. J Mater Sci-Mater Electron, 2019, 30: 3472–3481

    Article  CAS  Google Scholar 

  14. Wang Q, Dai M, Li H, Lu Y-, Chan T-, Ma C, Liu K, Fu J, Liao W, Chen S, Pensa E, Wang Y, Zhang S, Sun Y, Cortés E, Liu M. Adv Mater, 2023, 35: e2300695

    Article  PubMed  Google Scholar 

  15. Sun Q, Wang N, Zhang T, Bai R, Mayoral A, Zhang P, Zhang Q, Terasaki O, Yu J. Angew Chem Int Ed, 2019, 58: 18570–18576

    Article  CAS  Google Scholar 

  16. Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M. Nature, 2017, 551: 605–608

    Article  CAS  PubMed  Google Scholar 

  17. Zhao J, Xu J, Xu J, Ni J, Zhang T, Xu X, Li X. ChemPlusChem, 2014, 80: 196–201

    Article  Google Scholar 

  18. Zhang Y, Cheng Y, Wang X, Sun Q, He X, Ji H. ACS Catal, 2022, 12: 15091–15096

    Article  CAS  Google Scholar 

  19. Liu B, Wang Y, Huang N, Lan X, Wang T. ACS Catal, 2021, 11: 9850–9859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program Nanotechnology Specific Project (2020YFA0210900), the Science and Technology Key Project of Guangdong Province, China (2020B010188002), Guangdong Natural Science Funds for Distinguished Young Scholar (2022B1515020035), Guangdong Provincial Key R&D Program (2019B110206002), the National Natural Science Foundation of China (22078371, 21938001, 21961160741), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C102), the Natural Science Foundation of Guangdong Province (2020A1515011141), and the Science and Technology Project of Guangzhou City, China (202102020461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui He.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

11426_2023_1879_MOESM1_ESM.pdf

Activity promotion of Rh1Cax/Al2O3 single-atom catalyst in 1-octene hydroformylation: a volcano curve exists between Ca adding ratio and catalytic activity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, X., Wang, X. et al. Activity promotion of Rh1Cax/Al2O3 single-atom catalyst in 1-octene hydroformylation: a volcano curve exists between Ca adding ratio and catalytic activity. Sci. China Chem. 67, 1187–1192 (2024). https://doi.org/10.1007/s11426-023-1879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1879-8

Navigation