Skip to main content
Log in

Interplay between geometric and electronic structures of Pt entities over TiO2 for CO oxidation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Monodispersed Pt colloids with a mean size of 2 nm were deposited uniformly on the {110} facets of a rod-shaped rutile TiO2, forming a well-defined Pt/TiO2 system. Oxidative treatment of this precursor at elevated temperatures re-dispersed the Pt particles into clusters and single-atoms. Air-calcination at 673 K partially oxidized the Pt particle surface, while calcination at 773 K yielded PtOx clusters of 1.6 nm in 7–8 atomic layers. Further calcination at 873 K formed a mixture of raft-like PtOx clusters (1.6 nm, 1–2 atomic layers) and cationic single-atoms. When tested for CO oxidation at 373 K, the Pt particles showed a higher activity than the PtOx clusters, whereas the cationic single-atoms were much less active. Subsequent H2-reduction at 473 K converted the partially oxidized Pt particles into the metallic species, but they were encapsulated by TiO2−x overlayers because of the strong metal–support interactions, which decreased the activity dramatically. H2-reduction of the PtOx clusters at 473 K enhanced the fraction of metallic Pt species without changing the size and geometry, and promoted the activity substantially. H2-treatment of Pt single-atoms at 473 K increased the activity only moderately because most Pt species still kept at cationic species. These results straightforwardly differentiated the catalytic behavior of Pt particles, clusters and single-atoms at the same metal loading and over the same TiO2 support, and further demonstrated that the electronic structures of Pt entities played a decisive role in the catalytic oxidation, in addition to the specified sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Therrien AJ, Hensley AJR, Marcinkowski MD, Zhang R, Lucci FR, Coughlin B, Schilling AC, McEwen JS, Sykes ECH. Nat Catal, 2018, 1: 192–198

    Article  CAS  Google Scholar 

  2. van Deelen TW, Mejía CH, de Jong KP. Nat Catal, 2019, 2: 955–970

    Article  CAS  Google Scholar 

  3. Mitchell S, Pérez-Ramírez J. Nat Commun, 2020, 11: 4302

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  4. Giulimondi V, Mitchell S, Pérez-Ramírez J. ACS Catal, 2023, 13: 2981–2997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu L, Corma A. Trends Chem, 2020, 2: 383–400

    Article  CAS  Google Scholar 

  6. Santos VP, Carabineiro SAC, Tavares PB, Pereira MFR, Órfão JJM, Figueiredo JL. Appl Catal B-Environ, 2010, 99: 198–205

    Article  CAS  Google Scholar 

  7. Royer S, Duprez D. ChemCatChem, 2011, 3: 24–65

    Article  CAS  Google Scholar 

  8. Freund HJ, Meijer G, Scheffler M, Schlögl R, Wolf M. Angew Chem Int Ed, 2011, 50: 10064–10094

    Article  CAS  Google Scholar 

  9. Lin J, Wang X, Zhang T. Chin J Catal, 2016, 37: 1805–1813

    Article  CAS  Google Scholar 

  10. Kim GJ, Kwon DW, Hong SC. J Phys Chem C, 2016, 120: 17996–18004

    Article  CAS  Google Scholar 

  11. Liu L, Meira DM, Arenal R, Concepcion P, Puga AV, Corma A. ACS Catal, 2019, 9: 10626–10639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang H, Fang S, Hu YH. Catal Rev, 2020, 64: 491–532

    Article  Google Scholar 

  13. Xiao Q, Wang Y, Zhao ZJ, Pei C, Chen S, Gao L, Mu R, Fu Q, Gong J. Sci China Chem, 2020, 63: 1323–1330

    Article  CAS  Google Scholar 

  14. DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham GW, Pan X, Christopher P. J Am Chem Soc, 2017, 139: 14150–14165

    Article  PubMed  CAS  Google Scholar 

  15. Liu L, Corma A. Chem Rev, 2018, 118: 4981–5079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bonanni S, Aït-Mansour K, Brune H, Harbich W. ACS Catal, 2011, 1: 385–389

    Article  CAS  Google Scholar 

  17. Li L, Larsen AH, Romero NA, Morozov VA, Glinsvad C, Abild-Pedersen F, Greeley J, Jacobsen KW, Nørskov JK. J Phys Chem Lett, 2012, 4: 222–226

    Article  PubMed  Google Scholar 

  18. Ellaby T, Briquet L, Sarwar M, Thompsett D, Skylaris CK. J Chem Phys, 2019, 151: 114702

    Article  PubMed  ADS  Google Scholar 

  19. Yoo M, Kang E, Ha H, Yun J, Choi H, Lee JH, Kim TJ, Min J, Choi JS, Lee KS, Jung N, Kim S, Kim C, Yu YS, Kim HY. J Phys Chem Lett, 2022, 13: 1719–1725

    Article  PubMed  CAS  Google Scholar 

  20. Li N, Chen QY, Luo LF, Huang WX, Luo MF, Hu GS, Lu JQ. Appl Catal B-Environ, 2013, 142–143: 523–532

    Article  Google Scholar 

  21. Ding K, Gulec A, Johnson AM, Schweitzer NM, Stucky GD, Marks LD, Stair PC. Science, 2015, 350: 189–192

    Article  PubMed  ADS  CAS  Google Scholar 

  22. Aso R, Hojo H, Takahashi Y, Akashi T, Midoh Y, Ichihashi F, Nakajima H, Tamaoka T, Yubuta K, Nakanishi H, Einaga H, Tanigaki T, Shinada H, Murakami Y. Science, 2022, 378: 202–206

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Hojo H, Gondo M, Yoshizaki S, Einaga H. Nano Lett, 2022, 22: 145–150

    Article  PubMed  ADS  CAS  Google Scholar 

  24. Chua YPG, Gunasooriya GTKK, Saeys M, Seebauer EG. J Catal, 2014, 311: 306–313

    Article  CAS  Google Scholar 

  25. Kim SB, Shin JH, Kim GJ, Hong SC. Ind Eng Chem Res, 2022, 61: 14793–14803

    Article  CAS  Google Scholar 

  26. Liu J, Ding T, Zhang H, Li G, Cai J, Zhao D, Tian Y, Xian H, Bai X, Li X. Catal Sci Technol, 2018, 8: 4934–4944

    Article  CAS  Google Scholar 

  27. Alayon EMC, Singh J, Nachtegaal M, Harfouche M, van Bokhoven JA. J Catal, 2009, 263: 228–238

    Article  CAS  Google Scholar 

  28. Yoo M, Kang E, Choi H, Ha H, Choi H, Choi JS, Lee KS, Celestre R, Shapiro DA, Park JY, Kim C, Yu YS, Kim HY. J Mater Chem A, 2022, 10: 5942–5952

    Article  CAS  Google Scholar 

  29. DeRita L, Resasco J, Dai S, Boubnov A, Thang HV, Hoffman AS, Ro I, Graham GW, Bare SR, Pacchioni G, Pan X, Christopher P. Nat Mater, 2019, 18: 746–751

    Article  PubMed  ADS  CAS  Google Scholar 

  30. Choi H, Lee J, Kim D, Kumar A, Jeong B, Kim KJ, Lee H, Park JY. Catal Sci Technol, 2021, 11: 1698–1708

    Article  CAS  Google Scholar 

  31. Bamwenda GR, Tsubota S, Nakamura T, Haruta M. Catal Lett, 1997, 44: 83–87

    Article  CAS  Google Scholar 

  32. Resasco J, Yang F, Mou T, Wang B, Christopher P, Resasco DE. ACS Catal, 2019, 10: 595–603

    Article  Google Scholar 

  33. Kuo CT, Lu Y, Kovarik L, Engelhard M, Karim AM. ACS Catal, 2019, 9: 11030–11041

    Article  CAS  Google Scholar 

  34. Jones J, Xiong H, DeLaRiva AT, Peterson EJ, Pham H, Challa SR, Qi G, Oh S, Wiebenga MH, Hernández XIP, Wang Y, Datye AK. Science, 2016, 353: 150–154

    Article  PubMed  ADS  CAS  Google Scholar 

  35. Nur ASM, Funada E, Kiritoshi S, Matsumoto A, Kakei R, Hinokuma S, Yoshida H, Machida M. J Phys Chem C, 2018, 122: 662–669

    Article  CAS  Google Scholar 

  36. Cheng H, Zhu YA, Chen D, Åstrand PO, Li P, Qi Z, Zhou XG. J Phys Chem C, 2014, 118: 23711–23722

    Article  CAS  Google Scholar 

  37. Wang G, Xu YS, Qian P, Su YJ. Comput Mater Sci, 2019, 169: 109090

    Article  CAS  Google Scholar 

  38. Chang TY, Tanaka Y, Ishikawa R, Toyoura K, Matsunaga K, Ikuhara Y, Shibata N. Nano Lett, 2014, 14: 134–138

    Article  PubMed  ADS  CAS  Google Scholar 

  39. Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Bluhm H, Salmeron M, Somorjai GA. Science, 2010, 327: 850–853

    Article  PubMed  ADS  CAS  Google Scholar 

  40. Lykhach Y, Kozlov SM, Skála T, Tovt A, Stetsovych V, Tsud N, Dvořák F, Johánek V, Neitzel A, Mysliveček J, Fabris S, Matolín V, Neyman KM, Libuda J. Nat Mater, 2016, 15: 284–288

    Article  PubMed  ADS  CAS  Google Scholar 

  41. Macino M, Barnes AJ, Althahban SM, Qu R, Gibson EK, Morgan DJ, Freakley SJ, Dimitratos N, Kiely CJ, Gao X, Beale AM, Bethell D, He Q, Sankar M, Hutchings GJ. Nat Catal, 2019, 2: 873–881

    Article  CAS  Google Scholar 

  42. Ma Y, Ge H, Yi S, Yang M, Feng D, Ren Y, Gao J, Qin Y. Sci China Chem, 2022, 65: 2596–2603

    Article  CAS  Google Scholar 

  43. Petzoldt P, Eder M, Mackewicz S, Blum M, Kratky T, Günther S, Tschurl M, Heiz U, Lechner BAJ. J Phys Chem C, 2022, 126: 16127–16139

    Article  CAS  Google Scholar 

  44. Beck A, Huang X, Artiglia L, Zabilskiy M, Wang X, Rzepka P, Palagin D, Willinger MG, van Bokhoven JA. Nat Commun, 2020, 11: 3220

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  45. Wang JG, Li WX, Borg M, Gustafson J, Mikkelsen A, Pedersen TM, Lundgren E, Weissenrieder J, Klikovits J, Schmid M, Hammer B, Andersen JN. Phys Rev Lett, 2005, 95: 256102

    Article  PubMed  ADS  CAS  Google Scholar 

  46. Held G, Jones LB, Seddon EA, King DA. J Phys Chem B, 2005, 109: 6159–6163

    Article  PubMed  CAS  Google Scholar 

  47. Miller DJ, Öberg H, Kaya S, Casalongue HS, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A. Phys Rev Lett, 2011, 107: 195502

    Article  PubMed  ADS  CAS  Google Scholar 

  48. van Spronsen MA, Frenken JWM, Groot IMN. Nat Commun, 2017, 8: 429

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  49. Lang R, Xi W, Liu JC, Cui YT, Li T, Lee AF, Chen F, Chen Y, Li L, Li L, Lin J, Miao S, Liu X, Wang AQ, Wang X, Luo J, Qiao B, Li J, Zhang T. Nat Commun, 2019, 10: 234

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  50. Han B, Guo Y, Huang Y, Xi W, Xu J, Luo J, Qi H, Ren Y, Liu X, Qiao B, Zhang T. Angew Chem Int Ed, 2020, 59: 11824–11829

    Article  CAS  Google Scholar 

  51. Avanesian T, Dai S, Kale MJ, Graham GW, Pan X, Christopher P. J Am Chem Soc, 2017, 139: 4551–4558

    Article  PubMed  CAS  Google Scholar 

  52. Zhou P, Zhang H, Ji H, Ma W, Chen C, Zhao J. Sci China Chem, 2020, 63: 354–360

    Article  CAS  Google Scholar 

  53. Tigwell M, Douthwaite M, Smith LR, Dummer NF, Morgan DJ, Bethell D, Taylor SH, Hutchings GJ. J Phys Chem C, 2022, 126: 15651–15661

    Article  CAS  Google Scholar 

  54. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat Chem, 2011, 3: 634–641

    Article  PubMed  CAS  Google Scholar 

  55. Kottwitz M, Li Y, Palomino RM, Liu Z, Wang G, Wu Q, Huang J, Timoshenko J, Senanayake SD, Balasubramanian M, Lu D, Nuzzo RG, Frenkel AI. ACS Catal, 2019, 9: 8738–8748

    Article  CAS  Google Scholar 

  56. Gao F, Wang Y, Cai Y, Goodman DW. J Phys Chem C, 2009, 113: 174–181

    Article  CAS  Google Scholar 

  57. Gustafson J, Balmes O, Zhang C, Shipilin M, Schaefer A, Hagman B, Merte LR, Martin NM, Carlsson PA, Jankowski M, Crumlin EJ, Lundgren E. ACS Catal, 2018, 8: 4438–4445

    Article  CAS  Google Scholar 

  58. Li X, Wang X, Sadykov II, Palagin D, Safonova OV, Li J, Beck A, Krumeich F, van Bokhoven JA, Artiglia L. ACS Catal, 2021, 11: 13041–13049

    Article  CAS  Google Scholar 

  59. Maurer F, Beck A, Jelic J, Wang W, Mangold S, Stehle M, Wang D, Dolcet P, Gänzler AM, Kübel C, Studt F, Casapu M, Grunwaldt JD. ACS Catal, 2022, 12: 2473–2486

    Article  CAS  Google Scholar 

  60. Pedersen TM, Li WX, Hammer B. Phys Chem Chem Phys, 2006, 8: 1566–1574

    Article  PubMed  CAS  Google Scholar 

  61. Miller D, Casalongue HS, Bluhm H, Ogasawara H, Nilsson A, Kaya S. J Am Chem Soc, 2014, 136: 6340–6347

    Article  PubMed  CAS  Google Scholar 

  62. van Spronsen MA, Frenken JWM, Groot IMN. Chem Soc Rev, 2017, 46: 4347–4374

    Article  PubMed  CAS  Google Scholar 

  63. Wang H, Wang L, Xiao FS. Sci China Chem, 2022, 65: 2051–2057

    Article  CAS  Google Scholar 

  64. Beck A, Frey H, Huang X, Clark AH, Goodman ED, Cargnello M, Willinger M, van Bokhoven JA. Angew Chem Int Ed, 2023, 62: e202301468

    Article  CAS  Google Scholar 

  65. Shirley DA. Chem Phys Lett, 1972, 16: 220–225

    Article  ADS  CAS  Google Scholar 

  66. Jackson SD, Willis J, Mclellan GD, Webb G, Keegan MBT, Moyes RB, Simpson S, Wells PB, Whyman R. J Catal, 1993, 139: 191–206

    Article  CAS  Google Scholar 

  67. Boyanov BI, Morrison TI. J Phys Chem, 1996, 100: 16318–16326

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22002164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Li or Wenjie Shen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shi, W., Han, S. et al. Interplay between geometric and electronic structures of Pt entities over TiO2 for CO oxidation. Sci. China Chem. 67, 705–714 (2024). https://doi.org/10.1007/s11426-023-1874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1874-0

Navigation