Skip to main content
Log in

Transient spectral and dynamic properties of magic-size Cd3P2 nanoclusters in the limit of strong confinement

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Both semiconductor nanocrystals and organic molecules are important photofunctional materials for an array of applications. It is interesting to examine the intermediate regime between these two families, which can be interpreted as the strong-confinement limit of the nanocrystals or alternatively as the large-size limit of molecules. Here, we choose Cd3P2 magic-size clusters (MSCs) as a unique platform and apply time-resolved spectroscopy to investigate their spectral and dynamic properties. We find that these small clusters display molecular-like vibronic progression on their absorption and emission spectra and a large Stokes shift, which leads to well-separated transient absorption bleach and stimulated emission signals distinct from typical nanocrystals. On the other hand, such small size MSCs can still accommodate biexciton states, and the strongly enhanced Coulombic interactions lead to very fast dephasing of the biexciton resonance as well as rapid biexciton Auger annihilation (1.5 ps). Further, temperature-dependent measurements provide evidence for the transformation of band-edge excitons to localized excitons, with the localization likely driven by the softened lattice in these small-size clusters. These collective results demonstrate that strongly-confined nanoclusters indeed bridge the gap between nanocrystals and molecules, and can be a unique library to search for exotic excited state properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Efros AL, Rosen M. Annu Rev Mater Sci, 2000, 30: 475–521

    Article  CAS  Google Scholar 

  2. Alivisatos AP. Science, 1996, 271: 933–937

    Article  CAS  Google Scholar 

  3. Shirasaki Y, Supran GJ, Bawendi MG, Bulović V. Nat Photon, 2013, 7: 13–23

    Article  CAS  Google Scholar 

  4. Kramer IJ, Sargent EH. Chem Rev, 2014, 114: 863–882

    Article  PubMed  CAS  Google Scholar 

  5. de Arquer FPG, Talapin DV, Klimov VI, Arakawa Y, Bayer M, Sargent EH. Science, 2021, 373: eaaz8541

    Article  Google Scholar 

  6. Kagan CR, Lifshitz E, Sargent EH, Talapin DV. Science, 2016, 353: aac5523

    Article  PubMed  Google Scholar 

  7. Brus LE. J Chem Phys, 1983, 79: 5566–5571

    Article  CAS  Google Scholar 

  8. Brus LE. J Chem Phys, 1984, 80: 4403–4409

    Article  CAS  Google Scholar 

  9. Klimov VI. Annu Rev Phys Chem, 2007, 58: 635–673

    Article  PubMed  CAS  Google Scholar 

  10. Knowles KE, Hartstein KH, Kilburn TB, Marchioro A, Nelson HD, Whitham PJ, Gamelin DR. Chem Rev, 2016, 116: 10820–10851

    Article  PubMed  CAS  Google Scholar 

  11. Brennan MC, Herr JE, Nguyen-Beck TS, Zinna J, Draguta S, Rouvimov S, Parkhill J, Kuno M. J Am Chem Soc, 2017, 139: 12201–12208

    Article  PubMed  CAS  Google Scholar 

  12. Kelley AM. J Phys Chem Lett, 2010, 1: 1296–1300

    Article  CAS  Google Scholar 

  13. Zhou M, Jin R. Annu Rev Phys Chem, 2021, 72: 121–142

    Article  PubMed  CAS  Google Scholar 

  14. Zhou M, Higaki T, Hu G, Sfeir MY, Chen Y, Jiang D, Jin R. Science, 2019, 364: 279–282

    Article  PubMed  CAS  Google Scholar 

  15. Kong J, Wu Y, Zhou M. Chin J Chem Phys, 2021, 34: 598–604

    Article  CAS  Google Scholar 

  16. Herron N, Calabrese JC, Farneth WE, Wang Y. Science, 1993, 259: 1426–1428

    Article  PubMed  CAS  Google Scholar 

  17. Lee GSH, Craig DC, Ma I, Scudder ML, Bailey TD, Dance IG. J Am Chem Soc, 1988, 110: 4863–4864

    Article  CAS  Google Scholar 

  18. Dance IG, Choy A, Scudder ML. J Am Chem Soc, 1984, 106: 6285–6295

    Article  CAS  Google Scholar 

  19. Shen Q, Luan C, Rowell N, Zhang M, Wang K, Willis M, Chen X, Yu K. Inorg Chem, 2021, 60: 4243–4251

    Article  PubMed  CAS  Google Scholar 

  20. He L, Luan C, Rowell N, Zhang M, Chen X, Yu K. Acc Chem Res, 2021, 54: 776–786

    Article  PubMed  CAS  Google Scholar 

  21. Pun AB, Mule AS, Held JT, Norris DJ. Nano Lett, 2021, 21: 7651–7658

    Article  PubMed  CAS  Google Scholar 

  22. Hens Z, De Roo J. J Am Chem Soc, 2020, 142: 15627–15637

    Article  PubMed  CAS  Google Scholar 

  23. Bootharaju MS, Baek W, Lee S, Chang H, Kim J, Hyeon T. Small, 2021, 17: 2002067

    Article  CAS  Google Scholar 

  24. Muckel F, Lorenz S, Yang J, Nugraha TA, Scalise E, Hyeon T, Wippermann S, Bacher G. Nat Commun, 2020, 11: 4127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhou M, Zeng C, Chen Y, Zhao S, Sfeir MY, Zhu M, Jin R. Nat Commun, 2016, 7: 13240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kwon Y, Oh J, Lee E, Lee SH, Agnes A, Bang G, Kim J, Kim D, Kim S. Nat Commun, 2020, 11: 3127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang R, Ratcliffe CI, Wu X, Voznyy O, Tao Y, Yu K. J Phys Chem C, 2009, 113: 17979–17982

    Article  CAS  Google Scholar 

  28. Palencia C, Yu K, Boldt K. ACS Nano, 2020, 14: 1227–1235

    Article  PubMed  CAS  Google Scholar 

  29. Vossmeyer T, Reck G, Katsikas L, Haupt ETK, Schulz B, Weller H. Science, 1995, 267: 1476–1479

    Article  PubMed  CAS  Google Scholar 

  30. Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB. Nature, 2010, 466: 474–477

    Article  PubMed  CAS  Google Scholar 

  31. Sierański K, Szatkowski J, Misiewicz J. Phys Rev B, 1994, 50: 7331–7337

    Article  Google Scholar 

  32. Lin-Chung PJ. Phys Stat Sol (b), 1971, 47: 33–39

    Article  CAS  Google Scholar 

  33. Andrzejewski J, Misiewicz J. Phys Stat Sol (b), 2001, 227: 515–540

    Article  CAS  Google Scholar 

  34. Wu K, Liu Z, Zhu H, Lian T. J Phys Chem A, 2013, 117: 6362–6372

    Article  PubMed  CAS  Google Scholar 

  35. Honold A, Schultheis L, Kuhl J, Tu CW. Phys Rev B, 1989, 40: 6442–6445

    Article  CAS  Google Scholar 

  36. Wang H, Ferrio K, Steel DG, Hu YZ, Binder R, Koch SW. Phys Rev Lett, 1993, 71: 1261–1264

    Article  PubMed  CAS  Google Scholar 

  37. Nguyen DT, Voisin C, Roussignol P, Roquelet C, Lauret JS, Cassabois G. Phys Rev Lett, 2011, 107: 127401

    Article  PubMed  CAS  Google Scholar 

  38. Koyama T, Yoshimitsu S, Miyata Y, Shinohara H, Kishida H, Nakamura A. J Phys Chem C, 2013, 117: 20289–20299

    Article  CAS  Google Scholar 

  39. Boule C, Vaclavkova D, Bartos M, Nogajewski K, Zdražil L, Taniguchi T, Watanabe K, Potemski M, Kasprzak J. Phys Rev Mater, 2020, 4: 034001

    Article  CAS  Google Scholar 

  40. Katsch F, Selig M, Knorr A. Phys Rev Lett, 2020, 124: 257402

    Article  PubMed  CAS  Google Scholar 

  41. Moody G, Dass CK, Hao K, Chen CH, Li LJ, Singh A, Tran K, Clark G, Xu X, Berghôuser G, Malic E, Knorr A, Li X. Nat Commun, 2015, 6: 8315

    Article  PubMed  CAS  Google Scholar 

  42. Zhu H, Yang Y, Wu K, Lian T. Annu Rev Phys Chem, 2016, 67: 259–281

    Article  PubMed  CAS  Google Scholar 

  43. Chen Z, Beimborn II JC, Kirkwood N, Russo SP, Weber JM, Mulvaney P. J Phys Chem C, 2023, 127: 8657–8669

    Article  CAS  Google Scholar 

  44. Bowers MJ, McBride JR, Rosenthal SJ. J Am Chem Soc, 2005, 127: 15378–15379

    Article  PubMed  CAS  Google Scholar 

  45. Beecher AN, Yang X, Palmer JH, LaGrassa AL, Juhas P, Billinge SJL, Owen JS. J Am Chem Soc, 2014, 136: 10645–10653

    Article  PubMed  CAS  Google Scholar 

  46. Jethi L, Mack TG, Kambhampati P. J Phys Chem C, 2017, 121: 26102–26107

    Article  CAS  Google Scholar 

  47. Yang B, Han K. J Phys Chem Lett, 2021, 12: 8256–8262

    Article  PubMed  CAS  Google Scholar 

  48. Smith MD, Karunadasa HI. Acc Chem Res, 2018, 51: 619–627

    Article  PubMed  CAS  Google Scholar 

  49. Song K, Williams RT. Self-trapped Excitons. Berlin: Springer, 2013

    Google Scholar 

  50. Jiang F, Wu Z, Lu M, Gao Y, Li X, Bai X, Ji Y, Zhang Y. Adv Mater, 2023, 35: 2211088

    Article  Google Scholar 

  51. Ueta M, Kanzaki H, Kobayashi K, Toyozawa Y, Hanamura E, Ueta M, Kanzaki, H, Kobayashi K, Toyozawa Y, Hanamura E. Theory of Excitons in Phonon Fields. In: Excitonic Processes in Solids, Berlin: Springer, 1986, 203–284

    Chapter  Google Scholar 

  52. Li M, Xia Z. Chem Soc Rev, 2021, 50: 2626–2662

    Article  PubMed  CAS  Google Scholar 

  53. Iwanaga M, Azuma J, Shirai M, Tanaka K, Hayashi T. Phys Rev B, 2002, 65: 214306

    Article  Google Scholar 

  54. Franceschetti A, Pantelides ST. Phys Rev B, 2003, 68: 033313

    Article  Google Scholar 

  55. Degoli E, Cantele G, Luppi E, Magri R, Ninno D, Bisi O, Ossicini S. Phys Rev B, 2004, 69: 155411

    Article  Google Scholar 

  56. Franceschetti A. Phys Rev B, 2008, 78: 075418

    Article  Google Scholar 

  57. Pennycook TJ, McBride JR, Rosenthal SJ, Pennycook SJ, Pantelides ST. Nano Lett, 2012, 12: 3038–3042

    Article  PubMed  CAS  Google Scholar 

  58. Bawendi MG, Carroll PJ, Wilson WL, Brus LE. J Chem Phys, 1992, 96: 946–954

    Article  CAS  Google Scholar 

  59. Landes CF, Braun M, El-Sayed MA. J Phys Chem B, 2001, 105: 10554–10558

    Article  CAS  Google Scholar 

  60. Vörös M, Galli G, Zimanyi GT. ACS Nano, 2015, 9: 6882–6890

    Article  PubMed  Google Scholar 

  61. Allan G, Delerue C, Lannoo M. Phys Rev Lett, 1996, 76: 2961–2964

    Article  PubMed  CAS  Google Scholar 

  62. Puzder A, Williamson AJ, Gygi F, Galli G. Phys Rev Lett, 2004, 92: 217401

    Article  PubMed  Google Scholar 

  63. Wu K, Zhu H, Liu Z, Rodríguez-Córdoba W, Lian T. J Am Chem Soc, 2012, 134: 10337–10340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

K.W. acknowledges financial support from the Chinese Academy of Sciences (YSBR-007), the National Natural Science Foundation of China (22173098, 21975253), the Fundamental Research Funds for the Central Universities (20720220009) and the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingyi Zhu or Kaifeng Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Y., Yang, Y. et al. Transient spectral and dynamic properties of magic-size Cd3P2 nanoclusters in the limit of strong confinement. Sci. China Chem. 66, 3628–3635 (2023). https://doi.org/10.1007/s11426-023-1870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1870-1

Navigation