Skip to main content
Log in

TRIM21-dependent ultrasmall chiral gold nanoparticles for preventing microglia senescence against Alzheimer’s disease

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tripartite motif 21 (TRIM21) is an E3 ubiquitin ligase that shows great promise for protein degradation through ubiquitination. Here, ultrasmall chiral gold nanoparticles (D- or L-NPs) modified by D- or L-glutathione ligands were fabricated. After conjugated with an NLR family pyrin domain-containing protein 3 (NLRP3) antibody (D-NP-aNLRP3 or L-NP-aNLRP3), D-NP-aNLRP3 showed effective delivery efficiency of the antibody into microglia and prevented Aβ-mediated microglia senescence, and p16ink4a, a marker of senescence, in the microglia was reduced by 90.3% ± 7.8% while L-NP-aNLRP3 decreased by 48.01% ± 3.1%. Mechanistic investigations revealed that the D-NP-aNLRP3 ((1.5 ± 0.3) × 107 M−1) exhibited sixteen-fold larger binding affinity to transmembrane glycoprotein SLC3A2 than L-type ((9.5 ± 2.7) × 105 M−1), which led to a high efficiency of antibody delivery and TRIM21-dependent NLRP3 degradation. Notably, the blood-brain barrier (BBB)-crossing ability of chiral NP-aNLRP3 as well as NLRP3 degradation was demonstrated in vivo. The APP/PS1 Alzheimer’s disease (AD) model mice experiments exhibited a reduction of 89.7% ± 6.8% for the NLRP3 protein and 84.2 ± 7.5% for p16ink4a following the intravenous administration of D-NP-aNLRP3 once a week for 60 days. Furthermore, the levels of the AD markers Aβ and phosphorylated-Tau in the brains were reduced by 86.2% ± 8.2% and 81.6% ± 9.1%; these were 2.1-fold and 1.9-fold higher than those treated with L-NP-aNLRP3, respectively. The studies provide a method to rescue AD-like pathologies and prevent senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, Vieira-Saecker A, Schwartz S, Santarelli F, Kummer MP, Griep A, Gelpi E, Beilharz M, Riedel D, Golenbock DT, Geyer M, Walter J, Latz E, Heneka MT. Nature, 2017, 552: 355–361

    Article  CAS  PubMed  Google Scholar 

  2. Heneka MT, McManus RM, Latz E. Nat Rev Neurosci, 2018, 19: 610–621

    Article  CAS  PubMed  Google Scholar 

  3. Hu Y, Huang Y, Xing S, Chen C, Shen D, Chen J. Biol Res, 2022, 55: 10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang D, Cao Y, Yang X, Liu Y, Zhang Y, Li C, Chen G, Wang Q. Adv Mater, 2021, 33: 2006357

    Article  CAS  Google Scholar 

  5. Kim D, Kwon HJ, Hyeon T. Adv Mater, 2019, 31: 1807965

    Article  Google Scholar 

  6. Pan YC, Wang H, Xu X, Tian HW, Zhao H, Hu XY, Zhao Y, Liu Y, Ding G, Meng Q, Ravoo BJ, Zhang T, Guo DS. CCS Chem, 2021, 3: 2485–2497

    Article  CAS  Google Scholar 

  7. Uhlmann RE, Rother C, Rasmussen J, Schelle J, Bergmann C, Ullrich Gavilanes EM, Fritschi SK, Buehler A, Baumann F, Skodras A, Al-Shaana R, Beschorner N, Ye L, Kaeser SA, Obermüller U, Christensen S, Kartberg F, Stavenhagen JB, Rahfeld JU, Cynis H, Qian F, Weinreb PH, Bussiere T, Walker LC, Staufenbiel M, Jucker M. Nat Neurosci, 2020, 23: 1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie C, Zhuang XX, Niu Z, Ai R, Lautrup S, Zheng S, Jiang Y, Han R, Gupta TS, Cao S, Lagartos-Donate MJ, Cai CZ, Xie LM, Caponio D, Wang WW, Schmauck-Medina T, Zhang J, Wang H, Lou G, Xiao X, Zheng W, Palikaras K, Yang G, Caldwell KA, Caldwell GA, Shen HM, Nilsen H, Lu JH, Fang EF. Nat Biomed Eng, 2022, 6: 76–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herrup K. Nat Neurosci, 2015, 18: 794–799

    Article  CAS  PubMed  Google Scholar 

  10. Qu A, Sun M, Kim JY, Xu L, Hao C, Ma W, Wu X, Liu X, Kuang H, Kotov NA, Xu C. Nat Biomed Eng, 2021, 5: 103–113

    Article  CAS  PubMed  Google Scholar 

  11. Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Lindman S, Minogue AM, Thulin E, Walsh DM, Dawson KA, Linse S. J Am Chem Soc, 2008, 130: 15437–15443

    Article  CAS  PubMed  Google Scholar 

  12. Gao W, Wang W, Dong X, Sun Y. Small, 2020, 16: e2002804

    Article  PubMed  Google Scholar 

  13. Gao N, Liu Z, Zhang H, Liu C, Yu D, Ren J, Qu X. Angew Chem Int Ed, 2022, 61: e202115336

    Article  CAS  Google Scholar 

  14. Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, James LC, Schuh M. Cell, 2017, 171: 1692–1706.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mukadam AS, Miller LVC, Smith AE, Vaysburd M, Sakya SA, Sanford S, Keeling S, Tuck BJ, Katsinelos T, Green C, Skov L, Kaalund SS, Foss S, Mayes K, O’Connell K, Wing M, Knox C, Banbury J, Avezov E, Rowe JB, Goedert M, Andersen JT, James LC, McEwan WA. Science, 2023, 379: 1336–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, Hwang P, Chan AT, Graves SM, Uweru JO, Ledderose C, Kutlu MG, Wheeler MA, Kahan A, Ishikawa M, Wang YC, Loh YHE, Jiang JX, Surmeier DJ, Robson SC, Junger WG, Sebra R, Calipari ES, Kenny PJ, Eyo UB, Colonna M, Quintana FJ, Wake H, Gradinaru V, Schaefer A. Nature, 2020, 586: 417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kapralov AA, Yang Q, Dar HH, Tyurina YY, Anthonymuthu TS, Kim R, St. Croix CM, Mikulska-Ruminska K, Liu B, Shrivastava IH, Tyurin VA, Ting HC, Wu YL, Gao Y, Shurin GV, Artyukhova MA, Ponomareva LA, Timashev PS, Domingues RM, Stoyanovsky DA, Greenberger JS, Mallampalli RK, Bahar I, Gabrilovich DI, Bayir H, Kagan VE. Nat Chem Biol, 2020, 16: 278–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M, d’Errico P, Snaidero N, Costa Jordão MJ, Böttcher C, Kierdorf K, Jung S, Priller J, Misgeld T, Vlachos A, Meyer-Luehmann M, Knobeloch KP, Prinz M. Nat Immunol, 2020, 21: 802–815

    Article  CAS  PubMed  Google Scholar 

  19. Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T, Bonanno L, Li L, Lee DP, Morgens DW, Yang AC, Shuken SR, Gate D, Scott M, Khatri P, Luo J, Bertozzi CR, Bassik MC, Wyss-Coray T. Nature, 2019, 568: 187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang PL, Yim AKY, Kim KW, Avey D, Czepielewski RS, Colonna M, Milbrandt J, Randolph GJ. Nat Commun, 2020, 11: 2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S, McManus RM, Tejera D, Griep A, Santarelli F, Brosseron F, Opitz S, Stunden J, Merten M, Kayed R, Golenbock DT, Blum D, Latz E, Buée L, Heneka MT. Nature, 2019, 575: 669–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Toppala S, Ekblad LL, Tuisku J, Helin S, Johansson JJ, Laine H, Löyttyniemi E, Marjamäki P, Blennow K, Zetterberg H, Jula A, Viitanen M, Rinne JO. Neurology, 2021, 96: e1608–e1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jung H, Lee SY, Lim S, Choi HR, Choi Y, Kim M, Kim S, Lee Y, Han KH, Chung WS, Kim CH. Nat Med, 2022, 28: 1802–1812

    Article  CAS  PubMed  Google Scholar 

  24. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. Nature, 2012, 493: 674–678

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA, Martin-Estebane M, Muntslag TAO, Olmos-Alonso A, Guerrero-Carrasco M, Thomas D, Cragg MS, Gomez-Nicola D. Cell Rep, 2021, 35: 109228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin M, Xu R, Wang L, Alam MM, Ma Z, Zhu S, Martini AC, Jadali A, Bernabucci M, Xie P, Kwan KY, Pang ZP, Head E, Liu Y, Hart RP, Jiang P. Cell Stem Cell, 2022, 29: 1135–1153.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Nature, 2018, 562: 578–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo X, Sun M, Gao R, Qu A, Chen C, Xu C, Kuang H, Xu L. Angew Chem Int Ed, 2021, 60: 13073–13080

    Article  CAS  Google Scholar 

  29. Kim JY, Yeom J, Zhao G, Calcaterra H, Munn J, Zhang P, Kotov N. J Am Chem Soc, 2019, 141: 11739–11744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang H, Liu H, Tian Z, Lu D, Yu Y, Cestellos-Blanco S, Sakimoto KK, Yang P. Nat Nanotech, 2018, 13: 900–905

    Article  CAS  Google Scholar 

  31. Xing P, Zhao Y. Acc Chem Res, 2018, 51: 2324–2334

    Article  CAS  PubMed  Google Scholar 

  32. Lebreton G, Géminard C, Lapraz F, Pyrpassopoulos S, Cerezo D, Spéder P, Ostap EM, Noselli S. Science, 2018, 362: 949–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ciudad S, Puig E, Botzanowski T, Meigooni M, Arango AS, Do J, Mayzel M, Bayoumi M, Chaignepain S, Maglia G, Cianferani S, Orekhov V, Tajkhorshid E, Bardiaux B, Carulla N. Nat Commun, 2020, 11: 3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu L, Wang X, Wang W, Sun M, Choi WJ, Kim JY, Hao C, Li S, Qu A, Lu M, Wu X, Colombari FM, Gomes WR, Blanco AL, de Moura AF, Guo X, Kuang H, Kotov NA, Xu C. Nature, 2022, 601: 366–373

    Article  CAS  PubMed  Google Scholar 

  35. Cai J, Zhang W, Xu L, Hao C, Ma W, Sun M, Wu X, Qin X, Colombari FM, de Moura AF, Xu J, Silva MC, Carneiro-Neto EB, Gomes WR, Vallée RAL, Pereira EC, Liu X, Xu C, Klajn R, Kotov NA, Kuang H. Nat Nanotechnol, 2022, 17: 408–416

    Article  CAS  PubMed  Google Scholar 

  36. Shi B, Qu A, Wang W, Lu M, Xu Z, Chen C, Hao C, Sun M, Xu L, Xu C, Kuang H. CCS Chem, 2022, 4: 2440–2451

    Article  CAS  Google Scholar 

  37. Gao N, Du Z, Guan Y, Dong K, Ren J, Qu X. J Am Chem Soc, 2019, 141: 6915–6921

    Article  CAS  PubMed  Google Scholar 

  38. Hou K, Zhao J, Wang H, Li B, Li K, Shi X, Wan K, Ai J, Lv J, Wang D, Huang Q, Wang H, Cao Q, Liu S, Tang Z. Nat Commun, 2020, 11: 4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang H, Hao C, Qu A, Sun M, Xu L, Xu C, Kuang H. Angew Chem, 2020, 132: 7197–7204

    Article  Google Scholar 

  40. Hao C, Xu L, Kuang H, Xu C. Adv Mater, 2020, 32: e1802075

    Article  PubMed  Google Scholar 

  41. Hao C, Qu A, Xu L, Sun M, Zhang H, Xu C, Kuang H. J Am Chem Soc, 2019, 141: 1091–1099

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Z, Gu YQ, Wang HX. ACS Chem Neurosci, 2021, 12: 4236–4248

    Article  CAS  PubMed  Google Scholar 

  43. Wang H, Chao Y, Zhao H, Zhou X, Zhang F, Zhang Z, Li Z, Pan J, Wang J, Chen Q, Liu Z. ACS Nano, 2022, 16: 664–674

    Article  CAS  PubMed  Google Scholar 

  44. Sui B, Wang M, Cheng C, Zhang Q, Zhang J, Fan D, Xu P. Adv Funct Mater, 2021, 31: 2010556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zuchero YJY, Chen X, Bien-Ly N, Bumbaca D, Tong RK, Gao X, Zhang S, Hoyte K, Luk W, Huntley MA, Phu L, Tan C, Kallop D, Weimer RM, Lu Y, Kirkpatrick DS, Ernst JA, Chih B, Dennis MS, Watts RJ. Neuron, 2016, 89: 70–82

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Duchesne PN, Yu M, Jiang X, Ning X, Vinluan III RD, Zhang P, Zheng J. Angew Chem Int Ed, 2016, 55: 8894–8898

    Article  CAS  Google Scholar 

  47. Terstappen GC, Meyer AH, Bell RD, Zhang W. Nat Rev Drug Discov, 2021, 20: 362–383

    Article  CAS  PubMed  Google Scholar 

  48. Qu A, Wu X, Li S, Sun M, Xu L, Kuang H, Xu C. Adv Mater, 2020, 32: e2000184

    Article  PubMed  Google Scholar 

  49. Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, van IJcken WF, Houtsmuller AB, Pothof J, de Bruin RWF, Madl T, Hoeijmakers JHJ, Campisi J, de Keizer PLJ. Cell, 2017, 169: 132–147.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu M, Qu A, Li S, Sun M, Xu L, Kuang H, Xu C. Angew Chem Int Ed, 2020, 59: 8698–8705

    Article  CAS  Google Scholar 

  51. Li S, Sun M, Hao C, Qu A, Wu X, Xu L, Xu C, Kuang H. Angew Chem Int Ed, 2020, 59: 13915–13922

    Article  CAS  Google Scholar 

  52. Wang H, Xu XX, Pan Y, Yan YX, Hu X, Chen RW, Ravoo BJ, Guo D, Zhang T. Adv Mater, 2021, 33: e2006483

    Article  PubMed  Google Scholar 

  53. Leng F, Edison P. Nat Rev Neurol, 2021, 17: 157–172

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22274067, 82071187), the Natural Science Foundation of Jiangsu Province (BK20230043) and the Fundamental Research Funds for the Central Universities (JUSRP622009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Xu or Maozhong Sun.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Hao, C., Xu, L. et al. TRIM21-dependent ultrasmall chiral gold nanoparticles for preventing microglia senescence against Alzheimer’s disease. Sci. China Chem. 67, 1360–1372 (2024). https://doi.org/10.1007/s11426-023-1859-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1859-4

Navigation