Skip to main content
Log in

A silylene-stabilized distannavinylidene with a highly labile substituent

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Vinylidene and its heavier analogues are fundamentally important in synthetic chemistry, but their stabilization and structural characterization remains extremely challenging. Herein we describe that the reduction of an NHSi-stabilized stannyl-stannylene (2) with one molar equivalent of [(MesNacnac)Mg]2 affords an NHSi-stabilized distannavinylidene (3). Single-crystal X-ray crystallography and density functional theory (DFT) calculations show that compound 3 features a pronounced Sn=Sn double bond and one lone pair of electrons at the two-coordinate Sn atom. Most strikingly, 3 undergoes an interconversion with distannyne (4) upon the addition and removal of one molar equivalent of N-heterocyclic carbene. Compound 3 readily reacts with Ph2C=C=O, AdC≡P and (AlCp*)4 to give the structurally interesting stannacycles (5, 6) and an aluminyl distannyne (7), demonstrating its unique reactivity derived from the high substituent lability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Skell PS, Villaume JE, Fagone FA. J Am Chem Soc, 1972, 94: 7866–7867

    Article  CAS  Google Scholar 

  2. Laufer AH. J Chem Phys, 1980, 73: 49–52

    Article  CAS  Google Scholar 

  3. Brahms JC, Dailey WP. J Am Chem Soc, 1990, 112: 4046–4047

    Article  CAS  Google Scholar 

  4. Gilles MK, Lineberger WC, Ervin KM. J Am Chem Soc, 1993, 115: 1031–1038

    Article  CAS  Google Scholar 

  5. Knorr R. Chem Rev, 2004, 104: 3795–3850

    Article  PubMed  CAS  Google Scholar 

  6. Kutin Y, Reitz J, Antoni PW, Savitsky A, Pantazis DA, Kasanmascheff M, Hansmann MM. J Am Chem Soc, 2021, 143: 21410–21415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Nagase S, Kobayashi K, Takagi N. J Organomet Chem, 2000, 611: 264–271

    Article  CAS  Google Scholar 

  8. Lein M, Krapp A, Frenking G. J Am Chem Soc, 2005, 127: 6290–6299

    Article  PubMed  CAS  Google Scholar 

  9. Landis CR, Weinhold F. J Am Chem Soc, 2006, 128: 7335–7345

    Article  PubMed  CAS  Google Scholar 

  10. Leung WP, Chan YC, So CW. Organometallics, 2015, 34: 2067–2085

    Article  CAS  Google Scholar 

  11. Rivard E. Chem Soc Rev, 2016, 45: 989–1003

    Article  PubMed  CAS  Google Scholar 

  12. Davis JH, GoddardIii WA, Harding LB. J Am Chem Soc, 1977, 99: 2919–2925

    Article  CAS  Google Scholar 

  13. Osamura Y, SchaeferIii HF, Gray SK, Miller WH. J Am Chem Soc, 1981, 103: 1904–1907

    Article  CAS  Google Scholar 

  14. Jana A, Huch V, Scheschkewitz D. Angew Chem Int Ed, 2013, 52: 12179–12182

    Article  CAS  Google Scholar 

  15. Jana A, Majumdar M, Huch V, Zimmer M, Scheschkewitz D. Dalton Trans, 2014, 43: 5175–5181

    Article  PubMed  CAS  Google Scholar 

  16. Majhi PK, Zimmer M, Morgenstern B, Huch V, Scheschkewitz D. J Am Chem Soc, 2021, 143: 13350–13357

    Article  PubMed  CAS  Google Scholar 

  17. Ghana P, Arz MI, Das U, Schnakenburg G, Filippou AC. Angew Chem Int Ed, 2015, 54: 9980–9985

    Article  CAS  Google Scholar 

  18. Krebs KM, Hanselmann D, Schubert H, Wurst K, Scheele M, Wesemann L. J Am Chem Soc, 2019, 141: 3424–3429

    Article  PubMed  CAS  Google Scholar 

  19. Wilhelm C, Raiser D, Schubert H, Sindlinger CP, Wesemann L. Inorg Chem, 2021, 60: 9268–9272

    Article  PubMed  CAS  Google Scholar 

  20. Rit A, Campos J, Niu H, Aldridge S. Nat Chem, 2016, 8: 1022–1026

    Article  PubMed  CAS  Google Scholar 

  21. Wiberg N, Lerner HW, Vasisht SK, Wagner S, Karaghiosoff K, Nöth H, Ponikwar W. Eur J Inorg Chem, 1999, 1999: 1211–1218

    Article  Google Scholar 

  22. Hayes RL, Fattal E, Govind N, Carter EA. J Am Chem Soc, 2001, 123: 641–657

    Article  PubMed  CAS  Google Scholar 

  23. Ren Y, Bian W. J Phys Chem Lett, 2015, 6: 1824–1829

    Article  PubMed  CAS  Google Scholar 

  24. DeVine JA, Weichman ML, Laws B, Chang J, Babin MC, Balerdi G, Xie C, Malbon CL, Lineberger WC, Yarkony DR, Field RW, Gibson ST, Ma J, Guo H, Neumark DM. Science, 2017, 358: 336–339

    Article  PubMed  CAS  Google Scholar 

  25. Pu L, Twamley B, Power PP. J Am Chem Soc, 2000, 122: 3524–3525

    Article  CAS  Google Scholar 

  26. Phillips AD, Wright RJ, Olmstead MM, Power PP. J Am Chem Soc, 2002, 124: 5930–5931

    Article  PubMed  CAS  Google Scholar 

  27. Stender M, Phillips AD, Wright RJ, Power PP. Angew Chem Int Ed, 2002, 41: 1785–1787

    Article  CAS  Google Scholar 

  28. Sugiyama Y, Sasamori T, Hosoi Y, Furukawa Y, Takagi N, Nagase S, Tokitoh N. J Am Chem Soc, 2006, 128: 1023–1031

    Article  PubMed  CAS  Google Scholar 

  29. Sasamori T, Hironaka K, Sugiyama Y, Takagi N, Nagase S, Hosoi Y, Furukawa Y, Tokitoh N. J Am Chem Soc, 2008, 130: 13856–13857

    Article  PubMed  CAS  Google Scholar 

  30. Fischer RC, Power PP. Chem Rev, 2010, 110: 3877–3923

    Article  PubMed  CAS  Google Scholar 

  31. Power PP. Nature, 2010, 463: 171–177

    Article  PubMed  CAS  Google Scholar 

  32. Asay M, Sekiguchi A. Bull Chem Soc Jpn, 2012, 85: 1245–1261

    Article  CAS  Google Scholar 

  33. Präsang C, Scheschkewitz D. Chem Soc Rev, 2016, 45: 900–921

    Article  PubMed  Google Scholar 

  34. Hanusch F, Groll L, Inoue S. Chem Sci, 2021, 12: 2001–2015

    Article  CAS  Google Scholar 

  35. Chen M, Lei B, Wang X, Rong H, Song H, Mo Z. Angew Chem Int Ed, 2022, 61: e202204495

    Article  CAS  Google Scholar 

  36. Aleksandrov HA, Kozlov SM, Schauermann S, Vayssilov GN, Neyman KM. Angew Chem Int Ed, 2014, 53: 13371–13375

    Article  CAS  Google Scholar 

  37. Wang H, Wu L, Lin Z, Xie Z. J Am Chem Soc, 2017, 139: 13680–13683

    Article  PubMed  CAS  Google Scholar 

  38. Wang Y, Karni M, Yao S, Kaushansky A, Apeloig Y, Driess M. J Am Chem Soc, 2019, 141: 12916–12927

    Article  PubMed  CAS  Google Scholar 

  39. Yao S, Kostenko A, Xiong Y, Lorent C, Ruzicka A, Driess M. Angew Chem Int Ed, 2021, 60: 14864–14868

    Article  CAS  Google Scholar 

  40. Koike T, Nukazawa T, Iwamoto T. J Am Chem Soc, 2021, 143: 14332–14341

    Article  PubMed  CAS  Google Scholar 

  41. Du S, Jia H, Rong H, Song H, Cui C, Mo Z. Angew Chem Int Ed, 2022, 61: e202115570

    Article  CAS  Google Scholar 

  42. Krebs KM, Maudrich JJ, Wesemann L. Dalton Trans, 2016, 45: 8081–8088

    Article  PubMed  CAS  Google Scholar 

  43. Green SP, Jones C, Stasch A. Science, 2007, 318: 1754–1757

    Article  PubMed  CAS  Google Scholar 

  44. Xu J, Dai C, Yao S, Zhu J, Driess M. Angew Chem Int Ed, 2022, 61: e202114073

    Article  CAS  Google Scholar 

  45. Fukawa T, Lee VY, Nakamoto M, Sekiguchi A. J Am Chem Soc, 2004, 126: 11758–11759

    Article  PubMed  CAS  Google Scholar 

  46. Phung AC, Fettinger JC, Power PP. Organometallics, 2023, 42: 1649–1657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Glendening ED, Landis CR, Weinhold F. J Comput Chem, 2019, 40: 2234–2241

    Article  PubMed  CAS  Google Scholar 

  48. Mitoraj MP, Michalak A, Ziegler T. JChem Theor Comput, 2009, 5: 962–975

    Article  CAS  Google Scholar 

  49. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  50. Peng Y, Wang X, Fettinger JC, Power PP. Chem Commun, 2010, 46: 943–945

    Article  CAS  Google Scholar 

  51. Zheng X, Crumpton AE, Protchenko AV, Heilmann A, Ellwanger MA, Aldridge S. Chem Eur J, 2023, 29: e202203395

    Article  PubMed  CAS  Google Scholar 

  52. Sindlinger CP, Aicher FSW, Wesemann L. Inorg Chem, 2017, 56: 548–560

    Article  PubMed  CAS  Google Scholar 

  53. Chen Y, Li J, Zhao Y, Zhang L, Tan G, Zhu H, Roesky HW. J Am Chem Soc, 2021, 143: 2212–2216

    Article  PubMed  CAS  Google Scholar 

  54. Campion BK, Heyn RH, Tilley TD, Rheingold AL. JAm Chem Soc, 1993, 115: 5527–5537

    Article  CAS  Google Scholar 

  55. Veith M, Frank W. Angew Chem Int Ed, 1985, 24: 223–224

    Article  Google Scholar 

Download references

Acknowledgements This work was supported by the National Natural Science Foundation of China (22071124, 22371130, 22221002), the Frontiers Science Center for New Organic Matter at Nankai University (C029215001), the Fundamental Research Funds for the Central Universities (63206007), the Nankai University and Young Elite Scientists Sponsorship Program by Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbo Mo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://www.chem.scichina.com and https://www.link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Z., Chen, M. & Mo, Z. A silylene-stabilized distannavinylidene with a highly labile substituent. Sci. China Chem. 66, 3555–3561 (2023). https://doi.org/10.1007/s11426-023-1855-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1855-y

Navigation