Skip to main content
Log in

Synergistic silver-mediated and palladium-catalyzed nondirected olefination of aryl C–H bond: quick access to multi-substituted aryl olefins

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transition metal-catalyzed olefination of aryl C–H bond is a powerful tool for the synthesis of alkenes. While the Pd-catalyzed oxidative C–H olefination of arenes, also known as Fujiwara-Moritani reaction, has been established as one of the most efficient methods, the substrates are largely limited to terminal olefins with electron-withdrawing group(s). Herein, we report a synergistic silver-mediated and palladium-catalyzed non-directed C–H olefination of arenes with vinyl (pseudo)halides, which offers a complementary strategy to the typical Fujiwara-Moritani reaction. The reactions proceeded well for a variety of halogenated arenes, heteroarenes, and olefin substrates, providing an efficient access to various multi-substituted aryl olefins, including trisubstituted/tetrasubstituted olefins and several complex olefins derived from medicines or natural products. Mechanistic studies indicated a bimetallic Pd/Ag cooperation is operative in the catalysis, i.e., the reaction is initiated by aryl C–H bond cleavage via ligation with phosphine/Ag species, followed by transferring of the aryl moiety to a vinyl palladium intermediate, which is in turn formed by oxidative addition of vinyl (pseudo)halide to a Pd complex. This method enables the synthesis of a wide range of challenging multi-substituted vinyl products from simple arenes (directing-group free) in a streamlined and controllable fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Grimsdale AC, Leok Chan K, Martin RE, Jokisz PG, Holmes AB. Chem Rev, 2009, 109: 897–1091

    Article  CAS  PubMed  Google Scholar 

  2. Kang NY, Ha HH, Yun SW, Yu YH, Chang YT. Chem Soc Rev, 2011, 40: 3613–3626

    Article  CAS  PubMed  Google Scholar 

  3. Li MY, Zhai S, Nong XM, Gu A, Li J, Lin GQ, Liu Y. Sci China Chem, 2023, 66: 1261–1287

    Article  CAS  Google Scholar 

  4. Singh RSP, Michel D, Das U, Dimmock JR, Alcorn J. Bioorg Med Chem Lett, 2014, 24: 5199–5202

    Article  CAS  PubMed  Google Scholar 

  5. Manikandan R, Jeganmohan M. Chem Commun, 2017, 53: 8931–8947

    Article  CAS  Google Scholar 

  6. Ma W, Gandeepan P, Li J, Ackermann L. Org Chem Front, 2017, 4: 1435–1467

    Article  CAS  Google Scholar 

  7. Jeong S, Joo JM. Acc Chem Res, 2021, 54: 4518–4529

    Article  CAS  PubMed  Google Scholar 

  8. Ali W, Prakash G, Maiti D. Chem Sci, 2021, 12: 2735–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu Y, Wang C. ChemCatChem, 2019, 11: 1167–1174

    Article  CAS  Google Scholar 

  10. Nevado C, Echavarren AM. Synthesis, 2005, 2: 167–182

    Google Scholar 

  11. de Mendoza P, Echavarren AM. Pure Appl Chem, 2010, 82: 801–820

    Article  CAS  Google Scholar 

  12. Wang X, Zhou L, Lu W. COC, 2010, 14: 289–307

    Article  CAS  Google Scholar 

  13. Nakao Y. Chem Record, 2011, 11: 242–251

    Article  CAS  Google Scholar 

  14. Yamamoto Y. Chem Soc Rev, 2014, 43: 1575–1600

    Article  CAS  PubMed  Google Scholar 

  15. Ackermann L. Acc Chem Res, 2014, 47: 281–295

    Article  CAS  PubMed  Google Scholar 

  16. Manikandan R, Jeganmohan M. OrgBiomol Chem, 2015, 13: 10420–10436

    CAS  Google Scholar 

  17. Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem Rev, 2016, 116: 5894–5986

    Article  CAS  PubMed  Google Scholar 

  18. Biffis A, Tubaro C, Baron M. Chem Record, 2016, 16: 1742–1760

    Article  CAS  Google Scholar 

  19. Yamaguchi J, Yamaguchi AD, Itami K. Angew Chem Int Ed, 2012, 51: 8960–9009

    Article  CAS  Google Scholar 

  20. Neufeldt SR, Sanford MS. Acc Chem Res, 2012, 45: 936–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engle KM, Mei TS, Wasa M, Yu JQ. Acc Chem Res, 2012, 45: 788–802

    Article  CAS  PubMed  Google Scholar 

  22. Gao K, Yoshikai N. Acc Chem Res, 2014, 47: 1208–1219

    Article  CAS  PubMed  Google Scholar 

  23. Hummel JR, Boerth JA, Ellman JA. Chem Rev, 2017, 117: 9163–9227

    Article  CAS  PubMed  Google Scholar 

  24. Shang R, Ilies L, Nakamura E. Chem Rev, 2017, 117: 9086–9139

    Article  CAS  PubMed  Google Scholar 

  25. Niu B, Yang K, Lawrence B, Ge H. ChemSusChem, 2019, 12: 2955–2969

    Article  CAS  PubMed  Google Scholar 

  26. Rani G, Luxami V, Paul K. Chem Commun, 2020, 56: 12479–12521

    Article  CAS  Google Scholar 

  27. Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Junior EN, Maiti D. Chem Eur J, 2021, 27: 12453–12508

    Article  CAS  PubMed  Google Scholar 

  28. Song L, Van der Eycken EV. Chem Eur J, 2021, 27: 121–144

    Article  CAS  PubMed  Google Scholar 

  29. Inoue M, Tsurugi H, Mashima K. Coord Chem Rev, 2022, 473: 214810

    Article  CAS  Google Scholar 

  30. Dutta U, Maiti D. Acc Chem Res, 2022, 55: 354–372

    Article  CAS  PubMed  Google Scholar 

  31. Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew Chem Int Ed, 2012, 51: 10236–10254

    Article  CAS  Google Scholar 

  32. Dey A, Maity S, Maiti D. Chem Commun, 2016, 52: 12398–12414

    Article  CAS  Google Scholar 

  33. Yang Y, Lan J, You J. Chem Rev, 2017, 117: 8787–8863

    Article  CAS  PubMed  Google Scholar 

  34. Wedi P, van Gemmeren M. Angew Chem Int Ed, 2018, 57: 13016–13027

    Article  CAS  Google Scholar 

  35. Kancherla S, Jergensen K, Fernández-Ibáøez M. Synthesis, 2019, 51: 643–663

    Article  CAS  Google Scholar 

  36. Dalton T, Faber T, Glorius F. ACS Cent Sci, 2021, 7: 245–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bellotti P, Huang HM, Faber T, Glorius F. Chem Rev, 2023, 123: 4237–4352

    Article  CAS  PubMed  Google Scholar 

  38. Zhang YH, Shi BF, Yu JQ. J Am Chem Soc, 2009, 131: 5072–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye M, Gao GL, Yu JQ. J Am Chem Soc, 2011, 133: 6964–6967

    Article  CAS  PubMed  Google Scholar 

  40. Vora HU, Silvestri AP, Engelin CJ, Yu J-. Angew Chem Int Ed, 2014, 53: 2683–2686

    Article  CAS  Google Scholar 

  41. Wang P, Verma P, Xia G, Shi J, Qiao JX, Tao S, Cheng PTW, Poss MA, Farmer ME, Yeung KS, Yu JQ. Nature, 2017, 551: 489–493

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen XY, Wu Y, Zhou J, Wang P, Yu JQ. Org Lett, 2019, 21: 1426–1429

    Article  CAS  PubMed  Google Scholar 

  43. Meng G, Wang Z, Chan HSS, Chekshin N, Li Z, Wang P, Yu JQ. J Am Chem Soc, 2023, 145: 8198–8208

    Article  CAS  PubMed  Google Scholar 

  44. Chen H, Wedi P, Meyer T, Tavakoli G, van Gemmeren M. Angew Chem Int Ed, 2018, 57: 2497–2501

    Article  CAS  Google Scholar 

  45. Chen H, Farizyan M, Ghiringhelli F, van Gemmeren M. Angew Chem Int Ed, 2020, 59: 12213–12220

    Article  CAS  Google Scholar 

  46. Wedi P, Farizyan M, Bergander K, Mück-Lichtenfeld C, van Gemmeren M. Angew Chem IntEd, 2021, 60: 15641–15649

    Article  CAS  Google Scholar 

  47. Mondal A, Díaz-Ruiz M, Deufel F, Maseras F, van Gemmeren M. Chem, 2023, 9: 1004–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naksomboon K, Valderas C, Gómez-Martínez M, Álvarez-Casao Y, Fernández-Ibáøez MÁ. ACS Catal, 2017, 7: 6342–6346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Naksomboon K, Álvarez-Casao Y, Uiterweerd M, Westerveld N, Maciá B, Fernández-Ibáøez MÁ. Tetrahedron Lett, 2018, 59: 379–382

    Article  CAS  Google Scholar 

  50. Naksomboon K, Poater J, Bickelhaupt FM, Fernández-Ibáøez MÁ. Am Chem Soc, 2019, 141: 6719–6725

    Article  CAS  Google Scholar 

  51. Jia WL, Westerveld N, Wong KM, Morsch T, Hakkennes M, Naksomboon K, Fernández-Ibáøez MÁ. Org Lett, 2019, 21: 9339–9342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naksomboon K, Gómez-Bengoa E, Mehara J, Roithová J, Otten E, Fernández-Ibáøez MÁ. Chem Sci, 2023, 14: 2943–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim HT, Kang E, Kim M, Joo JM. Org Lett, 2021, 23: 3657–3662

    Article  CAS  PubMed  Google Scholar 

  54. Müller S, Lee W, Song JY, Kang E, Joo JM. Chem Commun, 2022, 58: 10809–10812

    Article  Google Scholar 

  55. Yun SJ, Kim J, Kang E, Jung H, Kim HT, Kim M, Joo JM. ACS Catal, 2023, 13: 4042–4052

    Article  CAS  Google Scholar 

  56. Saha A, Guin S, Ali W, Bhattacharya T, Sasmal S, Goswami N, Prakash G, Sinha SK, Chandrashekar HB, Panda S, Anjana SS, Maiti D. J Am Chem Soc, 2022, 144: 1929–1940

    Article  CAS  PubMed  Google Scholar 

  57. Panja S, Ahsan S, Pal T, Kolb S, Ali W, Sharma S, Das C, Grover J, Dutta A, Werz DB, Paul A, Maiti D. Chem Sci, 2022, 13: 9432–9439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oi S, Aizawa E, Ogino Y, Inoue Y. J Org Chem, 2005, 70: 3113–3119

    Article  CAS  PubMed  Google Scholar 

  59. Zaitsev VG, Daugulis O. J Am Chem Soc, 2005, 127: 4156–4157

    Article  CAS  PubMed  Google Scholar 

  60. Zhao Y, He G, Nack WA, Chen G. Org Lett, 2012, 14: 2948–2951

    Article  CAS  PubMed  Google Scholar 

  61. Jagtap RA, Vinod CP, Punji B. ACS Catal, 2019, 9: 431–441

    Article  CAS  Google Scholar 

  62. Hu Z, Belitz F, Zhang G, Papp F, Gooßen LJ. Org Lett, 2021, 23: 3541–3545

    Article  CAS  PubMed  Google Scholar 

  63. Do HQ, Daugulis O. J Am Chem Soc, 2008, 130: 1128–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Besselièvre F, Piguel S, Mahuteau-Betzer F, Grierson DS. Org Lett, 2008, 10: 4029–4032

    Article  PubMed  Google Scholar 

  65. Rossi R, Bellina F, Lessi M. Synthesis, 2010, 2010: 4131–4153

    Article  Google Scholar 

  66. Chen F, Zhang X. Chem Lett, 2011, 40: 978–979

    Article  Google Scholar 

  67. Lesieur M, Lazreg F, Cazin CSJ. Chem Commun, 2014, 50: 8927–8929

    Article  CAS  Google Scholar 

  68. Yuen OY, Charoensak M, So CM, Kuhakarn C, Kwong FY. Chem–An Asian J, 2015, 10: 857–861

    Article  CAS  Google Scholar 

  69. Fang L, Xue L, Yang P, Li X, Wang Z. Chem Lett, 2017, 46: 1223–1226

    Article  CAS  Google Scholar 

  70. Yee KY, Leung MP, Tse MH, Choy PY, Kwong FY. Eur J Inorg Chem, 2022, 2022: e202200288

    Article  CAS  Google Scholar 

  71. Fernández NP, Gaube G, Woelk KJ, Burns M, Hruszkewycz DP, Leitch DC. ACS Catal, 2022, 12: 6997–7003

    Article  Google Scholar 

  72. Zhang X, Fan S, He CY, Wan X, Min QQ, Yang J, Jiang ZX. J Am Chem Soc, 2010, 132: 4506–4507

    Article  CAS  PubMed  Google Scholar 

  73. Ricci P, Krämer K, Cambeiro XC, Larrosa I. J Am Chem Soc, 2013, 135: 13258–13261

    Article  CAS  PubMed  Google Scholar 

  74. Ricci P, Krämer K, Larrosa I. J Am Chem Soc, 2014, 136: 18082–18086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Whitaker D, Burés J, Larrosa I. J Am Chem Soc, 2016, 138: 8384–8387

    Article  CAS  PubMed  Google Scholar 

  76. Colletto C, Panigrahi A, Fernández-Casado J, Larrosa I. J Am Chem Soc, 2018, 140: 9638–9643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Batuecas M, Luo J, Gergelitsová I, Krämer K, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal, 2019, 9: 5268–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. ACS Catal, 2020, 10: 2100–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee SY, Hartwig JF. JAm Chem Soc, 2016, 138: 15278–15284

    Article  CAS  Google Scholar 

  80. Tlahuext-Aca A, Lee SY, Sakamoto S, Hartwig JF. ACS Catal, 2021, 11: 1430–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lotz MD, Camasso NM, Canty AJ, Sanford MS. Organometallics, 2017, 36: 165–171

    Article  CAS  Google Scholar 

  82. Liu KH, Hu GQ, Wang CX, Sheng FF, Bai JW, Gu JG, Zhang HH. Org Lett, 2021, 23: 5626–5630

    Article  CAS  PubMed  Google Scholar 

  83. Yao J, Bai J, Kang X, Zhu M, Guo Y, Wang X. Nanoscale, 2023, 15: 3560–3565

    Article  CAS  PubMed  Google Scholar 

  84. René O, Fagnou K. Org Lett, 2010, 12: 2116–2119

    Article  PubMed  Google Scholar 

  85. Tang P, Ritter T. Tetrahedron, 2011, 67: 4449–4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bay KL, Yang YF, Houk KN. J Organomet Chem, 2018, 864: 19–25

    Article  CAS  Google Scholar 

  87. Mudarra ÁL, Martínez de Salinas S, Pérez-Temprano MH. Org Biomol Chem, 2019, 17: 1655–1667

    Article  CAS  PubMed  Google Scholar 

  88. Bhattacharya T, Dutta S, Maiti D. ACS Catal, 2021, 11: 9702–9714

    Article  CAS  Google Scholar 

  89. Athavan G, Tanner TFN, Whitwood AC, Fairlamb IJS, Perutz RN. Organometallics, 2022, 41: 3175–3184

    Article  CAS  Google Scholar 

  90. Hoff LV, Chesnokov GA, Linden A, Gademann K. ACS Catal, 2022, 12: 9226–9237

    Article  CAS  Google Scholar 

  91. Furuya T, Strom AE, Ritter T. J Am Chem Soc, 2009, 131: 1662–1663

    Article  CAS  PubMed  Google Scholar 

  92. Tang P, Furuya T, Ritter T. JAm Chem Soc, 2010, 132: 12150–12154

    Article  CAS  Google Scholar 

  93. Ye Y, Kim ST, King RP, Baik MH, Buchwald SL. Angew Chem Int Ed, 2023, 62: e202300109

    Article  CAS  Google Scholar 

  94. Milner PJ, Maimone TJ, Su M, Chen J, Müller P, Buchwald SL. Am Chem Soc, 2012, 134: 19922–19934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1500100), the National Natural Science Foundation of China (21821002, 92256303, 22171278), Shanghai Science and Technology Committee (23ZR1482400), and the Natural Science Foundation of Ningbo (2023J034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Huo or Xiaoming Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1834_MOESM1_ESM.pdf

Synergistic silver-mediated and palladium-catalyzed nondirected olefination of aryl C–H bond: quick access to multi-substituted aryl olefins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Shao, L., Huo, X. et al. Synergistic silver-mediated and palladium-catalyzed nondirected olefination of aryl C–H bond: quick access to multi-substituted aryl olefins. Sci. China Chem. 67, 882–889 (2024). https://doi.org/10.1007/s11426-023-1834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1834-2

Navigation