Skip to main content
Log in

Opportunities for ionic liquid-based electrolytes in rechargeable lithium batteries

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) have been deemed as promising electrolyte materials for building safer and highly-performing rechargeable lithium batteries, owing to their negligible volatility, low-flammability, and high thermal stability, etc. The profound structural designability of IL cations and anions allows relatively facile regulations of their key physical (e.g., viscosities, and ionic conductivities) and electrochemical (e.g., anodic, and cathodic stabilities) properties, and therefore fulfills the critical requirements stipulated by various battery configurations. In this review, a historical overview on the development of ILs for non-aqueous electrolytes is provided, and the correlations between chemical structures and the basic properties of ILs are discussed. Furthermore, the key achievements in the field of IL-based electrolytes are scrutinized, including liquid electrolytes, polymer electrolytes, and composite polymer electrolytes. Based on literature reports and our previous work in this field, possible strategies to improve the performance of IL-based electrolytes and their rechargeable batteries are discussed. The present work not only provides the status quo in the development of IL-based electrolytes but also inspires the structural design of ILs for other kinds of rechargeable batteries (e.g., sodium, potassium, zinc batteries).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trahey L, Brushett FR, Balsara NP, Ceder G, Cheng L, Chiang YM, Hahn NT, Ingram BJ, Minteer SD, Moore JS, Mueller KT, Nazar LF, Persson KA, Siegel DJ, Xu K, Zavadil KR, Srinivasan V, Crabtree GW. Proc Natl Acad Sci USA, 2020, 117: 12550–12557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM. Science, 2011, 334: 928–935

    Article  PubMed  CAS  Google Scholar 

  3. Armand M, Tarascon JM. Nature, 2008, 451: 652–657

    Article  PubMed  CAS  Google Scholar 

  4. Tarascon JM, Armand M. Nature, 2001, 414: 359–367

    Article  PubMed  CAS  Google Scholar 

  5. Armand MB. Materials for Advanced Batteries. New York: Springer, 1980, pp 145–161

    Book  Google Scholar 

  6. Xie J, Lu YC. Nat Commun, 2020, 11: 2499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Tong B, Song Z, Wu H, Wang X, Feng W, Zhou Z, Zhang H. Mater Futures, 2022, 1: 042103

    Article  Google Scholar 

  8. Zhang H, Li C, Eshetu GG, Laruelle S, Grugeon S, Zaghib K, Julien C, Mauger A, Guyomard D, Rojo T, Gisbert-Trejo N, Passerini S, Huang X, Zhou Z, Johansson P, Forsyth M. Angew Chem Int Ed, 2020, 59: 534–538

    Article  CAS  Google Scholar 

  9. Tian Y, Zeng G, Rutt A, Shi T, Kim H, Wang J, Koettgen J, Sun Y, Ouyang B, Chen T, Lun Z, Rong Z, Persson K, Ceder G. Chem Rev, 2021, 121: 1623–1669

    Article  PubMed  CAS  Google Scholar 

  10. Tang X, Lv S, Jiang K, Zhou G, Liu X. J Power Sources, 2022, 542: 231792

    Article  CAS  Google Scholar 

  11. Zhou W, Zhang M, Kong X, Huang W, Zhang Q. Adv Sci, 2021, 8: 2004490

    Article  CAS  Google Scholar 

  12. Karuppasamy K, Theerthagiri J, Vikraman D, Yim CJ, Hussain S, Sharma R, Maiyalagan T, Qin J, Kim HS. Polymers, 2020, 12: 918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS. Chem Soc Rev, 2011, 40: 1383–1403

    Article  PubMed  CAS  Google Scholar 

  14. Hagiwara R, Lee JS. Electrochemistry, 2007, 75: 23–34

    Article  CAS  Google Scholar 

  15. Galiński M, Lewandowski A, Stępniak I. Electrochim Acta, 2006, 51: 5567–5580

    Article  Google Scholar 

  16. Buzzeo MC, Evans RG, Compton RG. ChemPhysChem, 2004, 5: 1106–1120

    Article  PubMed  CAS  Google Scholar 

  17. Huang M, Kan L, Zhao W, Wang Y, Xiong Y, Shan W, Lou Z. Chem Eng J, 2021, 421: 127763

    Article  CAS  Google Scholar 

  18. Zhou ZB, Matsumoto H, Tatsumi K. ChemPhysChem, 2005, 6: 1324–1332

    Article  PubMed  CAS  Google Scholar 

  19. Zhang H, Cheng X, Ma Q, Feng W, Zheng L, Nie J, Huang X, Armand M, Zhou Z. Electrochim Acta, 2016, 207: 66–75

    Article  CAS  Google Scholar 

  20. Fu S, Gong S, Liu C, Zheng L, Feng W, Nie J, Zhou Z. Electrochim Acta, 2013, 94: 229–237

    Article  CAS  Google Scholar 

  21. Liu K, Zhou YX, Han HB, Zhou SS, Feng WF, Nie J, Li H, Huang XJ, Armand M, Zhou ZB. Electrochim Acta, 2010, 55: 7145–7151

    Article  CAS  Google Scholar 

  22. Sakaebe H, Matsumoto H. Electrochem Commun, 2003, 5: 594–598

    Article  CAS  Google Scholar 

  23. Mandouma G, Collins J, Williams D. Acc Chem Res, 2023, 56: 1263–1270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhou ZB, Matsumoto H, Tatsumi K. Chem Eur J, 2005, 11: 752–766

    Article  PubMed  CAS  Google Scholar 

  25. Han HB, Nie J, Liu K, Li WK, Feng WF, Armand M, Matsumoto H, Zhou ZB. Electrochim Acta, 2010, 55: 1221–1226

    Article  CAS  Google Scholar 

  26. Howlett PC, MacFarlane DR, Hollenkamp AF. J Power Sources, 2003, 114: 277–284

    Article  CAS  Google Scholar 

  27. Liu C, Xu F, Feng S, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Zhou Z. Electrochim Acta, 2013, 99: 262–272

    Article  CAS  Google Scholar 

  28. Abdul-Sada AK, Greenway AM, Hitchcock PB, Mohammed TJ, Seddon KR, Zora JA. J Chem Soc Chem Commun, 1986, 1753–1754

  29. Lipsztajn M, Osteryoung RA. Inorg Chem, 1985, 24: 716–719

    Article  CAS  Google Scholar 

  30. Valderrama JO, Campusano RA. Comptes Rendus Chimie, 2016, 19: 654–664

    Article  CAS  Google Scholar 

  31. Forsyth SA, Pringle JM, MacFarlane DR. Aust J Chem, 2004, 57: 113–119

    Article  CAS  Google Scholar 

  32. Yim T, Kwon MS, Mun J, Lee KT. Israel J Chem, 2015, 55: 586–598

    Article  CAS  Google Scholar 

  33. Li W, Song B, Manthiram A. Chem Soc Rev, 2017, 46: 3006–3059

    Article  PubMed  CAS  Google Scholar 

  34. Yuan X, Ma F, Zuo L, Wang J, Yu N, Chen Y, Zhu Y, Huang Q, Holze R, Wu Y, van Ree T. Electrochem Energ Rev, 2021, 4: 1–34

    Article  CAS  Google Scholar 

  35. Ma X, Yu J, Hu Y, Texter J, Yan F. Ind Chem Mater, 2023, 1: 39–59

    Article  CAS  Google Scholar 

  36. Chen S, Wen K, Fan J, Bando Y, Golberg D. J Mater Chem A, 2018, 6: 11631–11663

    Article  CAS  Google Scholar 

  37. Yan S, Wang Y, Chen T, Gan Z, Chen S, Liu Y, Zhang S. J Power Sources, 2021, 491: 229603

    Article  CAS  Google Scholar 

  38. Lei Z, Chen B, Koo YM, MacFarlane DR. Chem Rev, 2017, 117: 6633–6635

    Article  PubMed  Google Scholar 

  39. Seddon KR. Nat Mater, 2003, 2: 363–365

    Article  PubMed  CAS  Google Scholar 

  40. Walden F, Acad Imper Sci (St Petersburg), 1914, 85: 1800–1801

    Google Scholar 

  41. Hurley FH, WIer TP. J Electrochem Soc, 1951, 98: 203

    Article  CAS  Google Scholar 

  42. Gordon CMC. Proc Am Acad Arts Sci, 1898, 34: 59

    Article  Google Scholar 

  43. Lorenz R, Ruckstuhl W. Z Anorg Chem, 1907, 52: 41–47

    Article  CAS  Google Scholar 

  44. Chum HL, Koch VR, Miller LL, Osteryoung RA. J Am Chem Soc, 1975, 97: 3264–3265

    Article  CAS  Google Scholar 

  45. Robinson J, Osteryoung RA. J Am Chem Soc, 1979, 101: 323–327

    Article  CAS  Google Scholar 

  46. Wilkes JS. Green Chem, 2002, 4: 73–80

    Article  CAS  Google Scholar 

  47. Wilkes JS, Levisky JA, Wilson RA, Hussey CL. Inorg Chem, 1982, 21: 1263–1264

    Article  CAS  Google Scholar 

  48. Dymek CJ, Williams JL, Groeger DJ, Auborn JJ. J Electrochem Soc, 1984, 131: 2887–2892

    Article  CAS  Google Scholar 

  49. Xu K, Zhang S, Angell CA. J Electrochem Soc, 1996, 143: 3548–3554

    Article  CAS  Google Scholar 

  50. Seddon KR, Stark A, Torres MJ. Pure Appl Chem, 2000, 72: 2275–2287

    Article  CAS  Google Scholar 

  51. Bolkan SA, Yoke JT. J Chem Eng Data, 1986, 31: 194–197

    Article  CAS  Google Scholar 

  52. Boon JA, Levisky JA, Pflug JL, Wilkes JS. J Org Chem, 1986, 51: 480–483

    Article  CAS  Google Scholar 

  53. Hitchcock PB, Mohammed TJ, Seddon KR, Zora JA, Hussey CL, Haynes Ward E. Inorg Chim Acta, 1986, 113: L25–L26

    Article  CAS  Google Scholar 

  54. Williams SD, Schoebrechts JP, Selkirk JC, Mamantov G. J Am Chem Soc, 1987, 109: 2218–2219

    Article  CAS  Google Scholar 

  55. Wilkes JS, Zaworotko MJ. J Chem Soc Chem Commun, 1992, 13: 965–967

    Article  Google Scholar 

  56. Fuller J, Carlin RT, De Long HC, Haworth D. J Chem Soc Chem Commun, 1994, 299–300

  57. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M. Science, 2002, 297: 983–987

    Article  PubMed  CAS  Google Scholar 

  58. Nakagawa H, Izuchi S, Kuwana K, Nukuda T, Aihara Y. J Electrochem Soc, 2003, 150: A695–A700

    Article  CAS  Google Scholar 

  59. Rebelo LPN, Lopes JNC, Esperança JMSS, Filipe E. J Phys Chem B, 2005, 109: 6040–6043

    Article  PubMed  CAS  Google Scholar 

  60. Santos LMNBF, Lopes JNC, Coutinho JAP, Esperança JMSS, Gomes LR, Marrucho IM, Rebelo LPN. J Am Chem Soc, 2007, 129: 284–285

    Article  PubMed  CAS  Google Scholar 

  61. Armand M, Moursli FEKC, Agence Nationale de Valorisation de la Recherche, France Patent, 1983

  62. Foropoulos Jr. J, DesMarteau DD. J Am Chem Soc, 1982, 104: 4260–4261

    Article  CAS  Google Scholar 

  63. Foropoulos Jr. J, DesMarteau DD. Inorg Chem, 1984, 23: 3720–3723

    Article  CAS  Google Scholar 

  64. Zhang H, Armand M. Israel J Chem, 2020, 61: 94–100

    Article  Google Scholar 

  65. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Nat Mater, 2009, 8: 621–629

    Article  PubMed  CAS  Google Scholar 

  66. Bonhôte P, Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M. Inorg Chem, 1996, 35: 1168–1178

    Article  PubMed  Google Scholar 

  67. Michot C, Armand M, Gauthier M, Ravet N. US Patent, WO9940025A1, 1999-08-12

  68. Han HB, Liu K, Feng SW, Zhou SS, Feng WF, Nie J, Li H, Huang XJ, Matsumoto H, Armand M, Zhou ZB. Electrochim Acta, 2010, 55: 7134–7144

    Article  CAS  Google Scholar 

  69. Guerfi A, Duchesne S, Kobayashi Y, Vijh A, Zaghib K. J Power Sources, 2008, 175: 866–873

    Article  CAS  Google Scholar 

  70. Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M. J Power Sources, 2006, 160: 1308–1313

    Article  CAS  Google Scholar 

  71. MacFarlane DR, Huang J, Forsyth M. Nature, 1999, 402: 792–794

    Article  CAS  Google Scholar 

  72. Garcia B, Armand M. J Power Sources, 2004, 132: 206–208

    Article  CAS  Google Scholar 

  73. Theivaprakasam S, Girard G, Howlett P, Forsyth M, Mitra S, MacFarlane D. npj Mater Degrad, 2018, 2: 1–9

    Article  CAS  Google Scholar 

  74. Song Z, Wang X, Wu H, Feng W, Nie J, Yu H, Huang X, Armand M, Zhang H, Zhou Z. J Power Sources Adv, 2022, 14: 100088

    Article  CAS  Google Scholar 

  75. Kühnel RS, Lübke M, Winter M, Passerini S, Balducci A. J Power Sources, 2012, 214: 178–184

    Article  Google Scholar 

  76. Earle MJ, Esperança JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA. Nature, 2006, 439: 831–834

    Article  PubMed  CAS  Google Scholar 

  77. Wasserscheid P. Nature, 2006, 439: 797

    Article  PubMed  CAS  Google Scholar 

  78. Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tschersich A, Verevkin SP, Heintz A. J Phys Chem A, 2006, 110: 7303–7306

    Article  PubMed  CAS  Google Scholar 

  79. Zhang H, Qiao L, Kühnle H, Figgemeier E, Armand M, Eshetu GG. Energy Environ Sci, 2023, 16: 11–52

    Article  Google Scholar 

  80. Armand M, Axmann P, Bresser D, Copley M, Edström K, Ekberg C, Guyomard D, Lestriez B, Novák P, Petranikova M, Porcher W, Trabesinger S, Wohlfahrt-Mehrens M, Zhang H. J Power Sources, 2020, 479: 228708

    Article  CAS  Google Scholar 

  81. Ward AG. Trans Faraday Soc, 1937, 33: 88–97

    Article  CAS  Google Scholar 

  82. Nancarrow P, Al-Othman A, Mital DK, Döpking S. Energy, 2021, 220: 119761

    Article  CAS  Google Scholar 

  83. Zhou ZB, Matsumoto H, Tatsumi K. Chem Lett, 2004, 33: 1636–1637

    Article  CAS  Google Scholar 

  84. Zhou ZB, Matsumoto H, Tatsumi K. Chem Eur J, 2004, 10: 6581–6591

    Article  PubMed  CAS  Google Scholar 

  85. De Vos N, Maton C, Stevens CV. ChemElectroChem, 2014, 1: 1258–1270

    Article  CAS  Google Scholar 

  86. Zhang S, Sun N, He X, Lu X, Zhang X. J Phys Chem Reference Data, 2006, 35: 1475–1517

    Article  CAS  Google Scholar 

  87. Avramov I. J Volcanol Geotherm Res, 2007, 160: 165–174

    Article  CAS  Google Scholar 

  88. Schmelzer JWP, Zanotto ED, Fokin VM. J Chem Phys, 2005, 122: 074511

    Article  PubMed  Google Scholar 

  89. Zhou ZB, Matsumoto H, Tatsumi K. Chem Eur J, 2006, 12: 2196–2212

    Article  PubMed  CAS  Google Scholar 

  90. Ueno K, Tokuda H, Watanabe M. Phys Chem Chem Phys, 2010, 12: 1649–1658

    Article  PubMed  CAS  Google Scholar 

  91. Yu AB, Feng CL, Zou RP, Yang RY. Powder Tech, 2003, 130: 70–76

    Article  CAS  Google Scholar 

  92. Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP. Adv Phys, 1961, 10: 165–209

    Article  Google Scholar 

  93. Ue M, Mori S. J Electrochem Soc, 1995, 142: 2577–2581

    Article  CAS  Google Scholar 

  94. Ue M. J Electrochem Soc, 1994, 141: 3336–3342

    Article  CAS  Google Scholar 

  95. Seki S, Kobayashi T, Kobayashi Y, Takei K, Miyashiro H, Hayamizu K, Tsuzuki S, Mitsugi T, Umebayashi Y. J Mol Liquids, 2010, 152: 9–13

    Article  CAS  Google Scholar 

  96. Han HB, Zhou SS, Zhang DJ, Feng SW, Li LF, Liu K, Feng WF, Nie J, Li H, Huang XJ. J Power Sources, 2011, 196: 3623–3632

    Article  CAS  Google Scholar 

  97. Zhang H, Song Z, Yuan W, Feng W, Nie J, Armand M, Huang X, Zhou Z. ChemElectroChem, 2021, 8: 1322–1328

    Article  CAS  Google Scholar 

  98. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. J Cheminform, 2012, 4: 17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Momma K, Izumi F. J Appl Crystlogr, 2011, 44: 1272–1276

    Article  CAS  Google Scholar 

  100. Every H, Bishop AG, Forsyth M, MacFarlane DR. Electrochim Acta, 2000, 45: 1279–1284

    Article  CAS  Google Scholar 

  101. Eshetu GG, Mecerreyes D, Forsyth M, Zhang H, Armand M. Mol Syst Des Eng, 2019, 4: 294–309

    Article  CAS  Google Scholar 

  102. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M. J Phys Chem B, 2005, 109: 6103–6110

    Article  PubMed  CAS  Google Scholar 

  103. Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagacé M, Vijh A, Zaghib K. J Power Sources, 2010, 195: 845–852

    Article  CAS  Google Scholar 

  104. Hollóczki O, Malberg F, Welton T, Kirchner B. Phys Chem Chem Phys, 2014, 16: 16880–16890

    Article  PubMed  Google Scholar 

  105. Tokuda H, Ishii K, Susan MABH, Tsuzuki S, Hayamizu K, Watanabe M. J Phys Chem B, 2006, 110: 2833–2839

    Article  PubMed  CAS  Google Scholar 

  106. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M. J Phys Chem B, 2004, 108: 16593–16600

    Article  CAS  Google Scholar 

  107. Noda A, Hayamizu K, Watanabe M. J Phys Chem B, 2001, 105: 4603–4610

    Article  CAS  Google Scholar 

  108. Velho P, Lopes C, Macedo EA. Fluid Phase Equilib, 2023, 569: 113766

    Article  CAS  Google Scholar 

  109. Yoshizawa M, Xu W, Angell CA. J Am Chem Soc, 2003, 125: 15411–15419

    Article  PubMed  CAS  Google Scholar 

  110. Xu W, Cooper EI, Angell CA. J Phys Chem B, 2003, 107: 6170–6178

    Article  CAS  Google Scholar 

  111. Angell CA, Xu W, Yoshizawa M, Hayashi A, Belieres JP. Ionic Liquids: The Front and Future of Material Development. Tokyo: High Technol Info, 2003, pp 43–55 (in Japanese) (English version is available from the corresponding author upon request)

    Google Scholar 

  112. Noda A, Susan MABH, Kudo K, Mitsushima S, Hayamizu K, Watanabe M. J Phys Chem B, 2003, 107: 4024–4033

    Article  CAS  Google Scholar 

  113. McEwen AB, Ngo HL, LeCompte K, Goldman JL. J Electrochem Soc, 1999, 146: 1687–1695

    Article  CAS  Google Scholar 

  114. Matsumoto K, Hagiwara R, Yoshida R, Ito Y, Mazej Z, Benkič P, Žemva B, Tamada O, Yoshino H, Matsubara S. Dalton Trans, 2004, 144–149

  115. Hultgren VM, Mariotti AWA, Bond AM, Wedd AG. Anal Chem, 2002, 74: 3151–3156

    Article  PubMed  CAS  Google Scholar 

  116. Ngo HL, LeCompte K, Hargens L, McEwen AB. ThermoChim Acta, 2000, 357–358: 97–102

    Article  Google Scholar 

  117. Lewandowski A, Stępniak I. Phys Chem Chem Phys, 2003, 5: 4215–4218

    Article  CAS  Google Scholar 

  118. Wu H, Song Z, Feng W, Zhou Z, Zhang H. Nano Res, 2023, 16: 9507–9518

    Article  CAS  Google Scholar 

  119. Chen R, Zhao T, Zhang X, Li L, Wu F. Nanoscale Horiz, 2016, 1: 423–444

    Article  PubMed  CAS  Google Scholar 

  120. Coustan L, Shul G, Bélanger D. Electrochem Commun, 2017, 77: 89–92

    Article  CAS  Google Scholar 

  121. Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. J Power Sources, 2006, 162: 658–662

    Article  CAS  Google Scholar 

  122. Liaw HJ, Chen CC, Chen YC, Chen JR, Huang SK, Liu SN. Green Chem, 2012, 14: 2001–2008

    Article  CAS  Google Scholar 

  123. Aschenbrenner O, Supasitmongkol S, Taylor M, Styring P. Green Chem, 2009, 11: 1217–1221

    Article  CAS  Google Scholar 

  124. Kim HT, Kang J, Mun J, Oh SM, Yim T, Kim YG. ACS Sustain Chem Eng, 2015, 4: 497–505

    Article  Google Scholar 

  125. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, Davis JH, Watanabe M, Simon P, Angell CA. Energy Environ Sci, 2014, 7: 232–250

    Article  CAS  Google Scholar 

  126. Fedorov MV, Kornyshev AA. Chem Rev, 2014, 114: 2978–3036

    Article  PubMed  CAS  Google Scholar 

  127. Tong B, Chen X, Chen L, Zhou Z, Peng Z. ACS Appl Energy Mater, 2018, 1: 4426–4431

    Article  CAS  Google Scholar 

  128. Lu H, Chen Z, Du H, Zhang K, Wang J, Hou Z, Fang J. Ionics, 2019, 25: 2685–2691

    Article  CAS  Google Scholar 

  129. Wang Y, Turk MC, Sankarasubramanian M, Srivatsa A, Roy D, Krishnan S. J Mater Sci, 2017, 52: 3719–3740

    Article  CAS  Google Scholar 

  130. Liu C, Ma X, Xu F, Zheng L, Zhang H, Feng W, Huang X, Armand M, Nie J, Chen H, Zhou Z. Electrochim Acta, 2014, 149: 370–385

    Article  CAS  Google Scholar 

  131. Wang X, Salari M, Jiang D, Varela JC, Anasori B, Wesolowski DJ, Dai S, Grinstaff MW, Gogotsi Y. Nat Rev Mater, 2020, 5: 787–808

    Article  CAS  Google Scholar 

  132. Eshetu GG, Judez X, Li C, Martinez-Ibañez M, Gracia I, Bondarchuk O, Carrasco J, Rodriguez-Martinez LM, Zhang H, Armand M. J Am Chem Soc, 2018, 140: 9921–9933

    Article  PubMed  CAS  Google Scholar 

  133. Kerr R, Mazouzi D, Eftekharnia M, Lestriez B, Dupré N, Forsyth M, Guyomard D, Howlett PC. ACS Energy Lett, 2017, 2: 1804–1809

    Article  CAS  Google Scholar 

  134. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Chem Rev, 2017, 117: 7190–7239

    Article  PubMed  CAS  Google Scholar 

  135. Newman GH, Francis RW, Gaines LH, Rao BML. J Electrochem Soc, 1980, 127: 2025–2027

    Article  CAS  Google Scholar 

  136. Aurbach D, Youngman O, Gofer Y, Meitav A. Electrochim Acta, 1990, 35: 625–638

    Article  CAS  Google Scholar 

  137. Li NW, Yin YX, Li JY, Zhang CH, Guo YG. Adv Sci, 2017, 4: 1600400

    Article  Google Scholar 

  138. Zhang XQ, Chen X, Xu R, Cheng XB, Peng HJ, Zhang R, Huang JQ, Zhang Q. Angew Chem Int Ed, 2017, 56: 14207–14211

    Article  CAS  Google Scholar 

  139. Alpen U, Rabenau A, Talat GH. Appl Phys Lett, 1977, 30: 621–623

    Article  Google Scholar 

  140. Pan J, Cheng YT, Qi Y. Phys Rev B, 2015, 91: 134116

    Article  Google Scholar 

  141. Kanamura K. J Power Sources, 1999, 81–82: 123–129

    Article  Google Scholar 

  142. Yoo DJ, Kim KJ, Choi JW. Adv Energy Mater, 2018, 8: 1702744

    Article  Google Scholar 

  143. Xu K. Chem Rev, 2004, 104: 4303–4418

    Article  PubMed  CAS  Google Scholar 

  144. Ren F, Li Z, Chen J, Huguet P, Peng Z, Deabate S. ACS Appl Mater Interfaces, 2022, 14: 4211–4219

    Article  PubMed  CAS  Google Scholar 

  145. Böttcher T, Kalinovich N, Kazakova O, Ponomarenko M, Vlasov K, Winter M, Röschenthaler GV. Novel fluorinated solvents and additives for lithium-ion batteries. In: Advanced Fluoride-Based Materials for Energy Conversion. Amsterdam: Elsevier, 2015, 125–145

    Chapter  Google Scholar 

  146. Cao X, Gao P, Ren X, Zou L, Engelhard MH, Matthews BE, Hu J, Niu C, Liu D, Arey BW, Wang C, Xiao J, Liu J, Xu W, Zhang JG. Proc Natl Acad Sci USA, 2021, 118: e2020357118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Kerr R, Singh N, Arthur TS, Pathirana T, Mizuno F, Takechi K, Forsyth M, Howlett PC. Sustain Energy Fuels, 2018, 2: 2276–2283

    Article  CAS  Google Scholar 

  148. Pal U, Girard GMA, O’Dell LA, Roy B, Wang X, Armand M, MacFarlane DR, Howlett PC, Forsyth M. J Phys Chem C, 2018, 122: 14373–14382

    Article  CAS  Google Scholar 

  149. Pal U, Chen F, Gyabang D, Pathirana T, Roy B, Kerr R, MacFarlane DR, Armand M, Howlett PC, Forsyth M. J Mater Chem A, 2020, 8: 18826–18839

    Article  CAS  Google Scholar 

  150. Zhang C, Gu S, Zhang D, Ma J, Zheng H, Zheng M, Lv R, Yu K, Wu J, Wang X, Yang QH, Kang F, Lv W. Energy Storage Mater, 2022, 52: 355–364

    Article  Google Scholar 

  151. Wang Z, Zhang F, Sun Y, Zheng L, Shen Y, Fu D, Li W, Pan A, Wang L, Xu J, Hu J, Wu X. Adv Energy Mater, 2021, 11: 2003752

    Article  CAS  Google Scholar 

  152. Tang X, Xiao D, Xu Z, Liu Q, Ding B, Dou H, Zhang X. J Mater Chem A, 2022, 10: 18374–18382

    Article  CAS  Google Scholar 

  153. Hubble D, Brown DE, Zhao Y, Fang C, Lau J, McCloskey BD, Liu G. Energy Environ Sci, 2022, 15: 550–578

    Article  CAS  Google Scholar 

  154. Domi Y, Usui H, Hirosawa T, Sugimoto K, Nakano T, Ando A, Sakaguchi H. ACS Omega, 2022, 7: 15846–15853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Kunze M, Jeong S, Appetecchi GB, Schönhoff M, Winter M, Passerini S. Electrochim Acta, 2012, 82: 69–74

    Article  CAS  Google Scholar 

  156. Xiang HF, Yin B, Wang H, Lin HW, Ge XW, Xie S, Chen CH. Electrochim Acta, 2010, 55: 5204–5209

    Article  CAS  Google Scholar 

  157. Aguilera L, Scheers J, Matic A. Phys Chem Chem Phys, 2016, 18: 25458–25464

    Article  PubMed  CAS  Google Scholar 

  158. Girard GMA, Hilder M, Nucciarone D, Whitbread K, Zavorine S, Moser M, Forsyth M, MacFarlane DR, Howlett PC. J Phys Chem C, 2017, 121: 21087–21095

    Article  CAS  Google Scholar 

  159. Yue K, Zhai C, Gu S, Yeo J, Zhou G. Electrochim Acta, 2022, 401: 139527

    Article  CAS  Google Scholar 

  160. Kühnel RS, Böckenfeld N, Passerini S, Winter M, Balducci A. Electrochim Acta, 2011, 56: 4092–4099

    Article  Google Scholar 

  161. Stępień D, Wolff B, Diemant T, Kim GT, Hausen F, Bresser D, Passerini S. ACS Appl Mater Interfaces, 2023, 15: 25462–25472

    Article  PubMed  Google Scholar 

  162. Hou T, Yang G, Rajput NN, Self J, Park SW, Nanda J, Persson KA. Nano Energy, 2019, 64: 103881

    Article  CAS  Google Scholar 

  163. Xu N, Shi J, Liu G, Yang X, Zheng J, Zhang Z, Yang Y. J Power Sources Adv, 2021, 7: 100043

    Article  CAS  Google Scholar 

  164. Huang Q, Lourenço TC, Costa LT, Zhang Y, Maginn EJ, Gurkan B. J Phys Chem B, 2019, 123: 516–527

    Article  PubMed  CAS  Google Scholar 

  165. Cheng H, Sun Q, Li L, Zou Y, Wang Y, Cai T, Zhao F, Liu G, Ma Z, Wahyudi W, Li Q, Ming J. ACS Energy Lett, 2022, 7: 490–513

    Article  CAS  Google Scholar 

  166. Ugata Y, Shigenobu K, Tatara R, Ueno K, Watanabe M, Dokko K. Phys Chem Chem Phys, 2021, 23: 21419–21436

    Article  PubMed  CAS  Google Scholar 

  167. Penley D, Wang X, Lee YY, Garaga MN, Ghahremani R, Greenbaum S, Maginn EJ, Gurkan B. J Chem Eng Data, 2022, 67: 1810–1823

    Article  CAS  Google Scholar 

  168. Xiao P, Yun X, Chen Y, Guo X, Gao P, Zhou G, Zheng C. Chem Soc Rev, 2023, 52: 5255–5316

    Article  PubMed  CAS  Google Scholar 

  169. Zou Y, Ma Z, Liu G, Li Q, Yin D, Shi X, Cao Z, Tian Z, Kim H, Guo Y, Sun C, Cavallo L, Wang L, Alshareef HN, Sun YK, Ming J. Angew Chem Int Ed, 2023, 62: e202216189

    Article  CAS  Google Scholar 

  170. Zou Y, Liu G, Wang Y, Li Q, Ma Z, Yin D, Liang Y, Cao Z, Cavallo L, Kim H, Wang L, Alshareef HN, Sun YK, Ming J. Adv Energy Mater, 2023, 13: 2300443

    Article  CAS  Google Scholar 

  171. Wang Y, Cao Z, Ma Z, Liu G, Cheng H, Zou Y, Cavallo L, Li Q, Ming J. ACS Energy Lett, 2023, 8: 1477–1484

    Article  CAS  Google Scholar 

  172. Li L, Cheng H, Zhang J, Guo Y, Sun C, Zhou M, Li Q, Ma Z, Ming J. ACS Energy Lett, 2023, 8: 1076–1095

    Article  CAS  Google Scholar 

  173. Huang J, Li F, Wu M, Wang H, Qi S, Jiang G, Li X, Ma J. Sci China Chem, 2022, 65: 840–857

    Article  CAS  Google Scholar 

  174. Liang HJ, Su MY, Zhao XX, Gu ZY, Yang JL, Guo W, Liu ZM, Zhang JP, Wu XL. Sci China Chem, 2023, 66: 1982–1988

    Article  CAS  Google Scholar 

  175. Liang JL, Sun SY, Yao N, Zheng Z, Zhang QK, Li BQ, Zhang XQ, Huang JQ. Sci China Chem, 2023, DOI:https://doi.org/10.1007/s11426-023-1730-x

  176. Liu T, Feng J, Shi Z, Li H, Zhao W, Mao M, Zhu X, Hu YS, Li H, Huang X, Chen L, Suo L. Sci China Chem, 2023, 66: 2700–2710

    Article  CAS  Google Scholar 

  177. Li Z, Borodin O, Smith GD, Bedrov D. J Phys Chem B, 2015, 119: 3085–3096

    Article  PubMed  CAS  Google Scholar 

  178. Tong B, Song Z, Feng W, Zhu J, Yu H, Huang X, Armand M, Zhou Z, Zhang H. Adv Energy Mater, 2023, 13: 2204085

    Article  CAS  Google Scholar 

  179. Meabe L, Aldalur I, Lindberg S, Arrese-Igor M, Armand M, Martinez-Ibañez M, Zhang H. Mater Futures, 2023, 2: 033501

    Article  Google Scholar 

  180. Wang X, Song Z, Wu H, Nie J, Feng W, Yu H, Huang X, Armand M, Zhou Z, Zhang H. ChemElectroChem, 2022, 9: e202101590

    Article  CAS  Google Scholar 

  181. Zhu M, Wu J, Wang Y, Song M, Long L, Siyal SH, Yang X, Sui G. J Energy Chem, 2019, 37: 126–142

    Article  Google Scholar 

  182. Ma C, Cui W, Liu X, Ding Y, Wang Y. InfoMat, 2021, 4: e12232

    Article  Google Scholar 

  183. Qian J, Jin B, Li Y, Zhan X, Hou Y, Zhang Q. J Energy Chem, 2021, 56: 420–437

    Article  CAS  Google Scholar 

  184. Liu X, Mariani A, Adenusi H, Passerini S. Angew Chem Int Ed, 2023, 62: e202219318

    Article  CAS  Google Scholar 

  185. MacFarlane DR, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, Ohno H, Watanabe M, Yan F, Zheng W, Zhang S, Zhang J. Nat Rev Mater, 2016, 1: 15005

    Article  CAS  Google Scholar 

  186. Robitaille CD, Fauteux D. J Electrochem Soc, 1986, 133: 315–325

    Article  CAS  Google Scholar 

  187. Wintersgill MC, Fontanella JJ, Pak YS, Greenbaum SG, Al-Mudaris A, Chadwick AV. Polymer, 1989, 30: 1123–1126

    Article  CAS  Google Scholar 

  188. Eshetu GG, Diemant T, Grugeon S, Behm RJ, Laruelle S, Armand M, Passerini S. ACS Appl Mater Interfaces, 2016, 8: 16087–16100

    Article  PubMed  CAS  Google Scholar 

  189. Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H, Huang X, Armand M, Nie J, Zhou Z. Electrochim Acta, 2014, 133: 529–538

    Article  CAS  Google Scholar 

  190. Sekhon SS, Kaur DP, Park JS, Yamada K. Electrochim Acta, 2012, 60: 366–374

    Article  CAS  Google Scholar 

  191. Mong Anh L, Kim D. ACS Appl Energy Mater, 2019, 2: 2585–2595

    Article  CAS  Google Scholar 

  192. Kim SK, Kim SY, Lee JY, Nam J, Lee WB, Kim S, Hyun K. J Power Sources, 2022, 518: 230748

    Article  CAS  Google Scholar 

  193. Guan J, Li Y, Li J. Ind Eng Chem Res, 2017, 56: 12456–12463

    Article  CAS  Google Scholar 

  194. Zhang H, Liu X, Li H, Hasa I, Passerini S. Angew Chem Int Ed, 2021, 60: 598–616

    Article  Google Scholar 

  195. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacín MR. J Mater Chem A, 2015, 3: 22–42

    Article  CAS  Google Scholar 

  196. Choi NS, Koo B, Yeon JT, Lee KT, Kim DW. Electrochim Acta, 2011, 56: 7249–7255

    Article  CAS  Google Scholar 

  197. Martinez-Ibañez M, Boaretto N, Santiago A, Meabe L, Wang X, Zugazua O, Raposo I, Forsyth M, Armand M, Zhang H. J Power Sources, 2023, 557: 232554

    Article  Google Scholar 

  198. Patel M, Chandrappa KG, Bhattacharyya AJ. Solid State Ion, 2010, 181: 844–848

    Article  CAS  Google Scholar 

  199. Forsyth M, Sun J, Macfarlane DR, Hill AJ. J Polym Sci B Polym Phys, 2000, 38: 341–350

    Article  CAS  Google Scholar 

  200. Austenangell C, Fan J, Liu C, Lu Q, Sanchez E, Xu K. Solid State Ion, 1994, 69: 343–353

    Article  Google Scholar 

  201. Zhang H, Li L, Feng W, Zhou Z, Nie J. Polymer, 2014, 55: 3339–3348

    Article  CAS  Google Scholar 

  202. Judez X, Zhang H, Li C, González-Marcos JA, Zhou Z, Armand M, Rodriguez-Martinez LM. J Phys Chem Lett, 2017, 8: 1956–1960

    Article  PubMed  CAS  Google Scholar 

  203. Judez X, Zhang H, Li C, Eshetu GG, Zhang Y, González-Marcos JA, Armand M, Rodriguez-Martinez LM. J Phys Chem Lett, 2017, 8: 3473–3477

    Article  PubMed  CAS  Google Scholar 

  204. Wang X, Chen F, Girard GMA, Zhu H, MacFarlane DR, Mecerreyes D, Armand M, Howlett PC, Forsyth M. Joule, 2019, 3: 2687–2702

    Article  CAS  Google Scholar 

  205. Wang X, Girard GMA, Zhu H, Yunis R, MacFarlane DR, Mecerreyes D, Bhattacharyya AJ, Howlett PC, Forsyth M. ACS Appl Energy Mater, 2019, 2: 6237–6245

    Article  CAS  Google Scholar 

  206. Brinkkötter M, Lozinskaya EI, Ponkratov DO, Vlasov PS, Rosenwinkel MP, Malyshkina IA, Vygodskii Y, Shaplov AS, Schönhoff M. Electrochim Acta, 2017, 237: 237–247

    Article  Google Scholar 

  207. Martinez-Ibañez M, Boaretto N, Meabe L, Wang X, Zhu H, Santiago A, Zugazua O, Forsyth M, Armand M, Zhang H. Chem Mater, 2022, 34: 7493–7502

    Article  Google Scholar 

  208. Liang L, Chen X, Yuan W, Chen H, Liao H, Zhang Y. ACS Appl Mater Interfaces, 2021, 13: 25410–25420

    Article  PubMed  CAS  Google Scholar 

  209. Chen X, Liang L, Hu W, Liao H, Zhang Y. J Power Sources, 2022, 542: 231766

    Article  CAS  Google Scholar 

  210. Weston J, Steele B. Solid State Ion, 1982, 7: 75–79

    Article  CAS  Google Scholar 

  211. Boaretto N, Meabe L, Martinez-Ibañez M, Armand M, Zhang H. J Electrochem Soc, 2020, 167: 070524

    Article  CAS  Google Scholar 

  212. Croce F, Appetecchi GB, Persi L, Scrosati B. Nature, 1998, 394: 456–458

    Article  CAS  Google Scholar 

  213. Borghini MC, Mastragostino M, Passerini S, Scrosati B. J Electrochem Soc, 1995, 142: 2118–2121

    Article  CAS  Google Scholar 

  214. Croce F, Scrosati B. J Power Sources, 1993, 43: 9–19

    Article  CAS  Google Scholar 

  215. Siller V, Morata A, Eroles MN, Arenal R, Gonzalez-Rosillo JC, López del Amo JM, Tarancón A. J Mater Chem A, 2021, 9: 17760–17769

    Article  CAS  Google Scholar 

  216. DeWees R, Wang H. ChemSusChem, 2019, 12: 3713–3725

    Article  PubMed  CAS  Google Scholar 

  217. Zhang Y, Liu H, Xie Z, Qu W, Freschi DJ, Liu J. Adv Funct Mater, 2023, 33: 2300973

    Article  CAS  Google Scholar 

  218. Shen Z, Cheng Y, Sun S, Ke X, Liu L, Shi Z. Carbon Energy, 2021, 3: 482–508

    Article  CAS  Google Scholar 

  219. Song X, Wang C, Chen J, Xin S, Yuan D, Wang Y, Dong K, Yang L, Wang G, Zhang H, Zhang S. Adv Funct Mater, 2021, 32: 2108706

    Article  Google Scholar 

  220. Wang C, Zhang H, Li J, Chai J, Dong S, Cui G. J Power Sources, 2018, 397: 157–161

    Article  CAS  Google Scholar 

  221. Pan X, Hou Q, Liu L, Zhang J, An M, Yang P. Ionics, 2021, 27: 2045–2051

    Article  CAS  Google Scholar 

  222. Wetjen M, Navarra MA, Panero S, Passerini S, Scrosati B, Hassoun J. ChemSusChem, 2013, 6: 1037–1043

    Article  PubMed  CAS  Google Scholar 

  223. Cardoso J, Mayrén A, Romero-Ibarra IC, Nava DP, Vazquez-Arenas J. RSC Adv, 2016, 6: 7249–7259

    Article  CAS  Google Scholar 

  224. Wang SH, Lin YY, Teng CY, Chen YM, Kuo PL, Lee YL, Hsieh CT, Teng H. ACS Appl Mater Interfaces, 2016, 8: 14776–14787

    Article  PubMed  CAS  Google Scholar 

  225. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Prog Polym Sci, 2013, 38: 1232–1261

    Article  CAS  Google Scholar 

  226. Li Y, Wong KW, Dou Q, Zhang W, Ng KM. ACS Appl Energy Mater, 2018, 1: 2664–2670

    Article  CAS  Google Scholar 

  227. Cheng Y, Zhang L, Xu S, Zhang H, Ren B, Li T, Zhang S. J Mater Chem A, 2018, 6: 18479–18487

    Article  CAS  Google Scholar 

  228. Korf KS, Lu Y, Kambe Y, Archer LA. J Mater Chem A, 2014, 2: 11866–11873

    Article  CAS  Google Scholar 

  229. Garaga MN, Aguilera L, Yaghini N, Matic A, Persson M, Martinelli A. Phys Chem Chem Phys, 2017, 19: 5727–5736

    Article  PubMed  CAS  Google Scholar 

  230. Yang G, Oh H, Chanthad C, Wang Q. Chem Mater, 2017, 29: 9275–9283

    Article  CAS  Google Scholar 

  231. Lifshitz M, Greenbaum A, Sasaki K, Gladkich A, Feldman Y, Golodnitsky D. J Power Sources, 2023, 556: 232502

    Article  CAS  Google Scholar 

  232. Yu Q, Jiang K, Yu C, Chen X, Zhang C, Yao Y, Jiang B, Long H. Chin Chem Lett, 2021, 32: 2659–2678

    Article  CAS  Google Scholar 

  233. Dirican M, Yan C, Zhu P, Zhang X. Mater Sci Eng-R-Rep, 2019, 136: 27–46

    Article  Google Scholar 

  234. Li A, Liao X, Zhang H, Shi L, Wang P, Cheng Q, Borovilas J, Li Z, Huang W, Fu Z, Dontigny M, Zaghib K, Myers K, Chuan X, Chen X, Yang Y. Adv Mater, 2020, 32: e1905517

    Article  PubMed  Google Scholar 

  235. Hou G, Ma X, Sun Q, Ai Q, Xu X, Chen L, Li D, Chen J, Zhong H, Li Y, Xu Z, Si P, Feng J, Zhang L, Ding F, Ci L. ACS Appl Mater Interfaces, 2018, 10: 18610–18618

    Article  PubMed  CAS  Google Scholar 

  236. Chung H, Kang B. Chem Mater, 2017, 29: 8611–8619

    Article  CAS  Google Scholar 

  237. Song X, Zhang H, Jiang D, Yang L, Zhang J, Yao M, Ji X, Wang G, Zhang S. Electrochim Acta, 2021, 368: 137581

    Article  CAS  Google Scholar 

  238. Guo Q, Han Y, Wang H, Xiong S, Sun W, Zheng C, Xie K. J Phys Chem C, 2018, 122: 10334–10342

    Article  CAS  Google Scholar 

  239. Liu Y, Lee JY, Hong L. J Power Sources, 2004, 129: 303–311

    Article  CAS  Google Scholar 

  240. Vijayakumar V, Anothumakkool B, Kurungot S, Winter M, Nair JR. Energy Environ Sci, 2021, 14: 2708–2788

    Article  CAS  Google Scholar 

  241. Zheng X, Xu D, Fu N, Yang Z. J Energy Chem, 2023, 81: 603–612

    Article  CAS  Google Scholar 

  242. Zhang D, Xu X, Huang X, Shi Z, Wang Z, Liu Z, Hu R, Liu J, Zhu M. J Mater Chem A, 2020, 8: 18043–18054

    Article  CAS  Google Scholar 

  243. Augustine CA, Panoth D, Paravannoor A. ChemistrySelect, 2019, 4: 7090–7095

    Article  CAS  Google Scholar 

  244. Chen Z, Kim GT, Kim JK, Zarrabeitia M, Kuenzel M, Liang HP, Geiger D, Kaiser U, Passerini S. Adv Energy Mater, 2021, 11: 2101339

    Article  CAS  Google Scholar 

  245. Lei W, Zhang C, Qiao R, Ravivarma M, Chen H, Ajdari FB, Salavati-Niasari M, Song J. ACS Appl Energy Mater, 2023, 6: 4363–4371

    Article  CAS  Google Scholar 

  246. Chen Z, Stepien D, Wu F, Zarrabeitia M, Liang HP, Kim JK, Kim GT, Passerini S. ChemSusChem, 2022, 15: e202200038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Liu X, Zarrabeitia M, Mariani A, Gao X, Schütz HM, Fang S, Bizien T, Elia GA, Passerini S. Small Methods, 2021, 5: e2100168

    Article  PubMed  Google Scholar 

  248. Slattery JM, Daguenet C, Dyson PJ, Schubert T, Krossing I. Angew Chem Int Ed, 2007, 46: 5384–5388

    Article  CAS  Google Scholar 

  249. Chen X, Liu X, Shen X, Zhang Q. Angew Chem Int Ed, 2021, 60: 24354–24366

    Article  CAS  Google Scholar 

  250. Lombardo T, Duquesnoy M, El-Bouysidy H, Årén F, Gallo-Bueno A, Jørgensen PB, Bhowmik A, Demortière A, Ayerbe E, Alcaide F, Reynaud M, Carrasco J, Grimaud A, Zhang C, Vegge T, Johansson P, Franco AA. Chem Rev, 2021, 122: 10899–10969

    Article  PubMed  PubMed Central  Google Scholar 

  251. Huang Y, Zhang X, Zhao Y, Zeng S, Dong H, Zhang S. Phys Chem Chem Phys, 2015, 17: 26918–26929

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported from the Fundamental Research Funds for the Central Universities, HUST (2020kfyXJJS095), and the National Natural Science Foundation of China (52203223 and 22279037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenfang Feng, Zhibin Zhou or Heng Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jin, L., Feng, W. et al. Opportunities for ionic liquid-based electrolytes in rechargeable lithium batteries. Sci. China Chem. 66, 3443–3466 (2023). https://doi.org/10.1007/s11426-023-1827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1827-0

Navigation