Skip to main content
Log in

Synthesis of atomically dispersed cationic nickel-confined mesoporous ZSM-48 (ANMZ-48) directed by metal complexes in amphiphilic molecules

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of mesoporous zeolite-anchored atomically dispersed metal catalysts (ADCs) is a considerable challenge in chemistry and materials science. Here we report the synthesis of atomically dispersed cationic nickel-confined mesoporous ZSM-48 (ANMZ-48) by in situ hydrothermal reaction employing a designed tri-functional metal complex template, by which the triquaternary ammonium groups in the hydrophilic region direct the formation of ZSM-48 zeolite; the aromatic groups in the hydrophobic tail generate the mesopores through π-π stacking; and the complexes formed by nickel ions coordinated with terpyridyl groups generate atomically dispersed Ni2+ confined in zeolite frameworks due to the strong sintering resistance generated by the strong coordination interaction. The ANMZ-48 is consisting of stacking of sheet-like ZSM-48 domains connected by multiply crystal twinning sharing the common (011) plane, generating abundant of imbedded mesopores with the uniform thickness of ∼2.4 nm and with the width of 10–50 nm. The excellent catalytic activity and stability of ANMZ-48 were also reflected in the dry reforming of methane (DRM) reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Serrano DP, Escola JM, Pizarro P. Chem Soc Rev, 2013, 42: 4004–4035

    Article  CAS  PubMed  Google Scholar 

  2. Wei Y, Parmentier TE, de Jong KP, Zečević J. Chem Soc Rev, 2015, 44: 7234–7261

    Article  CAS  PubMed  Google Scholar 

  3. Schwieger W, Machoke AG, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Chem Soc Rev, 2016, 45: 3353–3376

    Article  CAS  PubMed  Google Scholar 

  4. Chen LH, Sun MH, Wang Z, Yang W, Xie Z, Su BL. Chem Rev, 2020, 120: 11194–11294

    Article  CAS  PubMed  Google Scholar 

  5. Kerstens D, Smeyers B, Van Waeyenberg J, Zhang Q, Yu J, Sels BF. Adv Mater, 2020, 32: 2004690

    Article  CAS  Google Scholar 

  6. Shamzhy M, Opanasenko M, Concepción P, Martínez A. Chem Soc Rev, 2019, 48: 1095–1149

    Article  CAS  PubMed  Google Scholar 

  7. Wang N, Sun Q, Yu J. Adv Mater, 2019, 31: 1803966

    Article  Google Scholar 

  8. Gao C, Lyu F, Yin Y. Chem Rev, 2021, 121: 834–881

    Article  CAS  PubMed  Google Scholar 

  9. Fu W, Zhang L, Tang T, Ke Q, Wang S, Hu J, Fang G, Li J, Xiao FS. J Am Chem Soc, 2011, 133: 15346–15349

    Article  CAS  PubMed  Google Scholar 

  10. Mielby J, Abildstram JO, Wang F, Kasama T, Weidenthaler C, Kegnæs S. Angew Chem Int Ed, 2014, 53: 12513–12516

    Article  CAS  Google Scholar 

  11. Ren L, Guo Q, Kumar P, Orazov M, Xu D, Alhassan SM, Mkhoyan KA, Davis ME, Tsapatsis M. Angew Chem Int Ed, 2015, 54: 10848–10851

    Article  CAS  Google Scholar 

  12. Li J, He Y, Tan L, Zhang P, Peng X, Oruganti A, Yang G, Abe H, Wang Y, Tsubaki N. Nat Catal, 2018, 1: 787–793

    Article  CAS  Google Scholar 

  13. Han SW, Park H, Han J, Kim JC, Lee J, Jo C, Ryoo R. ACS Catal, 2021, 11: 9233–9241

    Article  CAS  Google Scholar 

  14. Sun Q, Wang N, Yu J. Adv Mater, 2021, 33: 2104442

    Article  CAS  Google Scholar 

  15. Liu L, Corma A. Chem Rev, 2018, 118: 4981–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lang R, Du X, Huang Y, Jiang X, Zhang Q, Guo Y, Liu K, Qiao B, Wang A, Zhang T. Chem Rev, 2020, 120: 11986–12043

    Article  CAS  PubMed  Google Scholar 

  17. Babucci M, Guntida A, Gates BC. Chem Rev, 2020, 120: 11956–11985

    Article  CAS  PubMed  Google Scholar 

  18. Qin R, Liu K, Wu Q, Zheng N. Chem Rev, 2020, 120: 11810–11899

    Article  CAS  PubMed  Google Scholar 

  19. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat Chem, 2011, 3: 634–641

    Article  CAS  PubMed  Google Scholar 

  20. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chem Rev, 2020, 120: 11900–11955

    Article  CAS  PubMed  Google Scholar 

  21. Zhang T, Chen Z, Walsh AG, Li Y, Zhang P. Adv Mater, 2020, 32: 2002910

    Article  CAS  Google Scholar 

  22. Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Chem Rev, 2022, 123: 379–444

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kistler JD, Chotigkrai N, Xu P, Enderle B, Praserthdam P, Chen CY, Browning ND, Gates BC. Angew Chem Int Ed, 2014, 53: 8904–8907

    Article  CAS  Google Scholar 

  24. Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M. Nature, 2017, 551: 605–608

    Article  CAS  PubMed  Google Scholar 

  25. Khivantsev K, Jaegers NR, Kovarik L, Hanson JC, Tao FF, Tang Y, Zhang X, Koleva IZ, Aleksandrov HA, Vayssilov GN, Wang Y, Gao F, Szanyi J. Angew Chem Int Ed, 2018, 57: 16672–16677

    Article  CAS  Google Scholar 

  26. Chai Y, Han X, Li W, Liu S, Yao S, Wang C, Shi W, da-Silva I, Manuel P, Cheng Y, Daemen LD, Ramirez-Cuesta AJ, Tang CC, Jiang L, Yang S, Guan N, Li L. Science, 2020, 368: 1002–1006

    Article  CAS  PubMed  Google Scholar 

  27. Felvey N, Guo J, Rana R, Xu L, Bare SR, Gates BC, Katz A, Kulkarni AR, Runnebaum RC, Kronawitter CX. J Am Chem Soc, 2022, 144: 13874–13887

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Gao S, Yu J. Chem Rev, 2022, 123: 6039–6106

    Article  PubMed  Google Scholar 

  29. Xue K, Mo Y, Long B, Wei W, Shan C, Guo S, Niu L. InfoMat, 2022, 4: e12296

    Article  CAS  Google Scholar 

  30. Ryoo R, Kim J, Jo C, Han SW, Kim JC, Park H, Han J, Shin HS, Shin JW. Nature, 2020, 585: 221–224

    Article  CAS  PubMed  Google Scholar 

  31. Numan M, Eom E, Li A, Mazur M, Cha HW, Ham HC, Jo C, Park SE. ACS Catal, 2021, 11: 9221–9232

    Article  CAS  Google Scholar 

  32. Qi L, Zhang Y, Babucci M, Chen C, Lu P, Li J, Dun C, Hoffman AS, Urban JJ, Tsapatsis M, Bare SR, Han Y, Gates BC, Bell AT. ACS Catal, 2022, 12: 11177–11189

    Article  CAS  Google Scholar 

  33. Song M, Zhang B, Zhai Z, Liu S, Wang L, Liu G. Ind Eng Chem Res, 2023, 62: 3853–3861

    Article  CAS  Google Scholar 

  34. Qin H, Feng N, Lv Q, Wan H, Guan G. Fuel Processing Tech, 2023, 241: 107604

    Article  CAS  Google Scholar 

  35. Hannagan RT, Giannakakis G, Réocreux R, Schumann J, Finzel J, Wang Y, Michaelides A, Deshlahra P, Christopher P, Flytzani-Stephanopoulos M, Stamatakis M, Sykes ECH. Science, 2021, 372: 1444–1447

    Article  CAS  Google Scholar 

  36. Liu Y, Li Z, Yu Q, Chen Y, Chai Z, Zhao G, Liu S, Cheong WC, Pan Y, Zhang Q, Gu L, Zheng L, Wang Y, Lu Y, Wang D, Chen C, Peng Q, Liu Y, Liu L, Chen J, Li Y. J Am Chem Soc, 2019, 141: 9305–9311

    Article  CAS  PubMed  Google Scholar 

  37. Serna P, Gates BC. Angew Chem Int Ed, 2011, 50: 5528–5531

    Article  CAS  Google Scholar 

  38. Sun Q, Wang N, Zhang T, Bai R, Mayoral A, Zhang P, Zhang Q, Terasaki O, Yu J. Angew Chem Int Ed, 2019, 58: 18570–18576

    Article  CAS  Google Scholar 

  39. Chai Y, Wu G, Liu X, Ren Y, Dai W, Wang C, Xie Z, Guan N, Li L. J Am Chem Soc, 2019, 141: 9920–9927

    Article  CAS  PubMed  Google Scholar 

  40. Wu L, Ren Z, He Y, Yang M, Yu Y, Liu Y, Tan L, Tang Y. ACS Appl Mater Interfaces, 2021, 13: 48934–48948

    Article  CAS  PubMed  Google Scholar 

  41. Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J Am Chem Soc, 2010, 132: 4169–4177

    Article  CAS  PubMed  Google Scholar 

  42. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R. Science, 2011, 333: 328–332

    Article  CAS  PubMed  Google Scholar 

  43. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461: 246–249

    Article  CAS  PubMed  Google Scholar 

  44. Xu D, Ma Y, Jing Z, Han L, Singh B, Feng J, Shen X, Cao F, Oleynikov P, Sun H, Terasaki O, Che S. Nat Commun, 2014, 5: 4262

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Ma Y, Che S. Chem Mater, 2018, 30: 1839–1843

    Article  CAS  Google Scholar 

  46. Jorgensen WL, Severance DL. J Am Chem Soc, 1990, 112: 4768–4774

    Article  CAS  Google Scholar 

  47. Jia X, Jiang J, Zou S, Han L, Zhu H, Zhang Q, Ma Y, Luo P, Wu P, Mayoral A, Han X, Cheng J, Che S. Angew Chem Int Ed, 2021, 60: 14571–14577

    Article  CAS  Google Scholar 

  48. Akri M, Zhao S, Li X, Zang K, Lee AF, Isaacs MA, Xi W, Gangarajula Y, Luo J, Ren Y, Cui YT, Li L, Su Y, Pan X, Wen W, Pan Y, Wilson K, Li L, Qiao B, Ishii H, Liao YF, Wang A, Wang X, Zhang T. Nat Commun, 2019, 10: 5181

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin S, Wang J, Mi Y, Yang S, Wang Z, Liu W, Wu D, Peng H. Chin J Catal, 2021, 42: 1808–1820

    Article  CAS  Google Scholar 

  50. McFarlane AR, Silverwood IP, Norris EL, Ormerod RM, Frost CD, Parker SF, Lennon D. Chem Phys, 2013, 427: 54–60

    Article  CAS  Google Scholar 

  51. Liu Z, Grinter DC, Lustemberg PG, Nguyen-Phan T, Zhou Y, Luo S, Waluyo I, Crumlin EJ, Stacchiola DJ, Zhou J, Carrasco J, Busnengo HF, Ganduglia-Pirovano MV, Senanayake SD, Rodriguez JA. Angew Chem Int Ed, 2016, 55: 7455–7459

    Article  CAS  Google Scholar 

  52. Marinho ALA, Rabelo-Neto RC, Epron F, Bion N, Toniolo FS, Noronha FB. Appl Catal B-Environ, 2020, 268: 118387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21922304, 22276086) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxi Fang, Honggen Peng, Shunai Che or Lu Han.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1823_MOESM1_ESM.pdf

Synthesis of Atomically Dispersed Cationic Nickel-Confined Mesoporous ZSM-48 (ANMZ-48) Directed by Metal Complexes in Amphiphilic Molecules

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Deng, Q., Mao, Y. et al. Synthesis of atomically dispersed cationic nickel-confined mesoporous ZSM-48 (ANMZ-48) directed by metal complexes in amphiphilic molecules. Sci. China Chem. 67, 343–350 (2024). https://doi.org/10.1007/s11426-023-1823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1823-9

Navigation