Skip to main content
Log in

Dynamic-static coupled sensing of trace biomarkers by molecularly imprinted metal-organic frameworks

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Accommodating target analytes within the pores of metal-organic frameworks (MOFs) to improve the sensing performance is an important but challenging task. Here, we report a novel molecular imprinting strategy to create target recognition sites in a tailored multicomponent MOF with the inter-ligand synergistic antenna effect to lanthanide ions, enabling selective recognition of trace biomarkers, which is critical to the early diagnosis of age-related diseases in blood samples with high sensitivity and ultralow limit of detection (LOD) of 69 nmol L−1. Compared with MOF-based sensors without imprinted recognition sites, the significantly enhanced sensing performance (both sensitivity and LOD) was attributed to a dynamic-static coupled sensing mechanism: the dynamic interactions involve concentrating the trace biomarkers at the imprinted recognition sites to enhance the sensing performance at ultralow concentration, and the static interactions are derived from electron/energy exchange between the molecularly imprinted MOF and the biomarker to govern the sensing performance. This work establishes a new molecular imprinting strategy to attain advanced materials for sensing trace bio-analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chapman J, Truong VK, Elbourne A, Gangadoo S, Cheeseman S, Rajapaksha P, Latham K, Crawford RJ, Cozzolino D. Chem Rev, 2018, 120: 6048–6069

    Article  Google Scholar 

  2. Li HY, Zhao SN, Zang SQ, Li J. Chem Soc Rev, 2020, 49: 6364–6401

    Article  PubMed  CAS  Google Scholar 

  3. Zhao Y, Zeng H, Zhu XW, Lu W, Li D. Chem Soc Rev, 2021, 50: 4484–4513

    Article  PubMed  CAS  Google Scholar 

  4. Atella V, Mortari AP, Kopinska J, Belotti F, Lapi F, Cricelli C, Fontana L. Aging Cell, 2019, 18: e12861

    Article  PubMed  CAS  Google Scholar 

  5. Cheng P, Pu K. Nat Rev Mater, 2021, 6: 1095–1113

    Article  CAS  Google Scholar 

  6. Schalkwijk CG, Stehouwer CDA. Physiol Rev, 2020, 100: 407–461

    Article  PubMed  CAS  Google Scholar 

  7. Ramasamy R, Yan SF, Schmidt AM. Cell, 2006, 124: 258–260

    Article  PubMed  CAS  Google Scholar 

  8. Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS. Diabetes, 1999, 48: 198–202

    Article  PubMed  CAS  Google Scholar 

  9. Wang H, Xu Y, Rao L, Yang C, Yuan H, Gao T, Chen X, Sun H, Xian M, Liu C, Liu C. Anal Chem, 2019, 91: 5646–5653

    Article  PubMed  CAS  Google Scholar 

  10. Rabbani N, Thornalley PJ. Nat Protoc, 2014, 9: 1969–1979

    Article  PubMed  CAS  Google Scholar 

  11. Chatterjee S, Wen J, Chen A. Biosens Bioelectron, 2013, 42: 349–354

    Article  PubMed  CAS  Google Scholar 

  12. Yang M, Fan J, Zhang J, Du J, Peng X. Chem Sci, 2018, 9: 6758–6764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang T, Douglass Jr. EF, Fitzgerald KJ, Spiegel DA. J Am Chem Soc, 2013, 135: 12429–12433

    Article  PubMed  CAS  Google Scholar 

  14. Takeuchi T, Mori K, Sunayama H, Takano E, Kitayama Y, Shimizu T, Hirose Y, Inubushi S, Sasaki R, Tanino H. J Am Chem Soc, 2020, 142: 6617–6624

    Article  PubMed  CAS  Google Scholar 

  15. Mier A, Maffucci I, Merlier F, Prost E, Montagna V, Ruiz-Esparza GU, Bonventre JV, Dhal PK, Bui BTS, Sakhaii P, Haupt K. Angew Chem Int Ed, 2021, 60: 20849–20857

    Article  CAS  Google Scholar 

  16. Mori K, Hirase M, Morishige T, Takano E, Sunayama H, Kitayama Y, Inubushi S, Sasaki R, Yashiro M, Takeuchi T. Angew Chem Int Ed, 2019, 58: 1612–1615

    Article  CAS  Google Scholar 

  17. Zhang H. Adv Mater, 2020, 32: 1806328

    Article  CAS  Google Scholar 

  18. Pan J, Chen W, Ma Y, Pan G. Chem Soc Rev, 2018, 47: 5574–5587

    Article  PubMed  CAS  Google Scholar 

  19. Chen L, Wang X, Lu W, Wu X, Li J. Chem Soc Rev, 2016, 45: 2137–2211

    Article  PubMed  CAS  Google Scholar 

  20. Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Adv Mater, 2021, 33: 2100543

    Article  CAS  Google Scholar 

  21. BelBruno JJ. Chem Rev, 2019, 119: 94–119

    Article  PubMed  CAS  Google Scholar 

  22. Haupt K, Rangel PXM, Bui BTS. Chem Rev, 2020, 120: 9554–9582

    Article  PubMed  CAS  Google Scholar 

  23. Yaghi OM, Kalmutzki MJ, Diercks CS. Introduction to Reticular Chemistry, Metal-organic Frameworks and Covalent Organic Frameworks, Berlin: WILEY-VCH, 2019

    Book  Google Scholar 

  24. Cai G, Yan P, Zhang L, Zhou HC, Jiang HL. Chem Rev, 2021, 121: 12278–12326

    Article  PubMed  CAS  Google Scholar 

  25. Zeng H, Xie M, Wang T, Wei RJ, Xie XJ, Zhao Y, Lu W, Li D. Nature, 2021, 595: 542–548

    Article  PubMed  CAS  Google Scholar 

  26. Han Z, Wang K, Wang M, Sun T, Xu J, Zhou HC, Cheng P, Shi W. Chem, 2023, 9: 2561–2572

    Article  CAS  Google Scholar 

  27. Trickett CA, Popp TMO, Su J, Yan C, Weisberg J, Huq A, Urban P, Jiang J, Kalmutzki MJ, Liu Q, Baek J, Head-Gordon MP, Somorjai GA, Reimer JA, Yaghi OM. Nat Chem, 2019, 11: 170–176

    Article  PubMed  CAS  Google Scholar 

  28. Liu J, Xie D, Shi W, Cheng P. Chem Soc Rev, 2020, 49: 1624–1642

    Article  PubMed  CAS  Google Scholar 

  29. Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK. Chem Soc Rev, 2017, 46: 3242–3285

    Article  PubMed  CAS  Google Scholar 

  30. Han Z, Wang K, Zhou HC, Cheng P, Shi W. Nat Protoc, 2023, 18: 1621–1640

    Article  PubMed  CAS  Google Scholar 

  31. Li Q, Zhang W, Miljanić OŠ, Sue CH, Zhao YL, Liu L, Knobler CB, Stoddart JF, Yaghi OM. Science, 2009, 325: 855–859

    Article  PubMed  CAS  Google Scholar 

  32. Wu S, Lin Y, Liu J, Shi W, Yang G, Cheng P. Adv Funct Mater, 2018, 28: 1707169

    Article  Google Scholar 

  33. Min H, Han Z, Wang M, Li Y, Zhou T, Shi W, Cheng P. Inorg Chem Front, 2020, 7: 3379–3385

    Article  CAS  Google Scholar 

  34. Ebrahim FM, Nguyen TN, Shyshkanov S, Gładysiak A, Favre P, Zacharia A, Itskos G, Dyson PJ, Stylianou KC. J Am Chem Soc, 2019, 141: 3052–3058

    Article  PubMed  CAS  Google Scholar 

  35. Wang C, Liu X, Demir NK, Chen JP, Li K. Chem Soc Rev, 2016, 45: 5107–5134

    Article  PubMed  CAS  Google Scholar 

  36. Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, Farha OK. Nat Rev Mater, 2016, 1: 15018

    Article  CAS  Google Scholar 

  37. Bassett AP, Magennis SW, Glover PB, Lewis DJ, Spencer N, Parsons S, Williams RM, De Cola L, Pikramenou Z. J Am Chem Soc, 2004, 126: 9413–9424

    Article  PubMed  CAS  Google Scholar 

  38. Sager WF, Filipescu N, Serafin FA. J Phys Chem, 1965, 69: 1092–1100

    Article  CAS  Google Scholar 

  39. Steemers FJ, Verboom W, Reinhoudt DN, van der Tol EB, Verhoeven JW. J Am Chem Soc, 1995, 117: 9408–9414

    Article  CAS  Google Scholar 

  40. Latva M, Takalo H, Mukkala VM, Matachescu C, Rodríguez-Ubis JC, Kankare J. J Lumin, 1997, 75: 149–169

    Article  CAS  Google Scholar 

  41. Mako TL, Racicot JM, Levine M. Chem Rev, 2019, 119: 322–477

    Article  PubMed  CAS  Google Scholar 

  42. Committee AM. Analyst, 1987, 112: 199–204

    Article  Google Scholar 

  43. Escobar L, Ballester P. Chem Rev, 2021, 121: 2445–2514

    Article  PubMed  CAS  Google Scholar 

  44. Zhao D, Swager TM. Macromolecules, 2005, 38: 9377–9384

    Article  CAS  Google Scholar 

  45. Chadborn N, Bryant J, Bain AJ, O’Shea P. Biophys J, 1999, 76: 2198–2207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chen S, Yu YL, Wang JH. Anal Chim Acta, 2018, 999: 13–26

    Article  PubMed  CAS  Google Scholar 

  47. Sun W, Li M, Fan J, Peng X. Acc Chem Res, 2019, 52: 2818–2831

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements This research was supported by the National Natural Science Foundation of China (21931004, 92156002, 22261132509, 21971123 and 22071115) and the Natural Science Foundation of Tianjin (18JCJQJC47200). W.S. and S.Y. acknowledges the receipt of a Newton Advanced Fellowship from Royal Society (NAF\R1\180297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sihai Yang or Wei Shi.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, H., Han, Z., Sun, T. et al. Dynamic-static coupled sensing of trace biomarkers by molecularly imprinted metal-organic frameworks. Sci. China Chem. 66, 3511–3517 (2023). https://doi.org/10.1007/s11426-023-1822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1822-6

Navigation