Skip to main content
Log in

Tuning electronic structure of Ni3S2 with tungsten doping for high-performance electrooxidation of 5-hydroxymethylfurfural

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrooxidation of the biomass derivative 5-hydroxymethylfurfural (HMF) is a highly promising approach for attaining versatile value-added chemicals (e.g., 2,5-furandicarboxylic acid, FDCA). Ni-based sulfides are promising electrocatalysts for HMF electrooxidation reaction (HMFOR). However, the HMFOR activity of Ni-based catalysts is far from satisfactory due to the unfavorable adsorption of HMF and OH*. Herein, we propose controlled W doping to effectively modify the electronic configuration of nanostructured Ni3S2 to manipulate adsorption of HMF and OH*, for efficiently converting HMF into FDCA. Experimental and theoretical calculations indicate the incorporation of high-valence W results in the upshift of d-band center of Ni3S2, which facilitates the adsorption and dissociation of water to produce more OH*. Meanwhile, the high-valence W has strong electron-withdrawing ability and attracts electrons from Ni, leading to the elevated Ni valence, which is beneficial to optimizing the adsorption energy of HMF. Both concurrently contribute to the superb HMFOR performance. As a result, W20-Ni3S2@NF with optimal W dopant exhibits a low driving potential (1.34 V vs. RHE at 10 mA cm−2), accompanying with the 100% HMF conversion, 99.2% FDCA selectivity, and 97.3% Faraday efficiency. This work provides a design principle for HMFOR electrocatalysts by modulating the adsorption behaviors of HMF and OH* via rational electronic structure engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang T, Tao L, Zhu X, Chen C, Chen W, Du S, Zhou Y, Zhou B, Wang D, Xie C, Long P, Li W, Wang Y, Chen R, Zou Y, Fu XZ, Li Y, Duan X, Wang S. Nat Catal, 2021, 5: 66–73

    Article  Google Scholar 

  2. Fan FR, Xie S, Wang GW, Tian ZQ. Sci China Chem, 2021, 64: 1609–1613

    Article  CAS  Google Scholar 

  3. You B, Liu X, Jiang N, Sun Y. J Am Chem Soc, 2016, 138: 13639–13646

    Article  PubMed  CAS  Google Scholar 

  4. Lu Y, Dong CL, Huang YC, Zou Y, Liu Y, Li Y, Zhang N, Chen W, Zhou L, Lin H, Wang S. Sci China Chem, 2020, 63: 980–986

    Article  CAS  Google Scholar 

  5. Zhou P, Lv X, Tao S, Wu J, Wang H, Wei X, Wang T, Zhou B, Lu Y, Frauenheim T, Fu X, Wang S, Zou Y. Adv Mater, 2022, 34: 2204089

    Article  CAS  Google Scholar 

  6. Lu X, Wu KH, Zhang B, Chen J, Li F, Su BJ, Yan P, Chen JM, Qi W. Angew Chem Int Ed, 2021, 60: 14528–14535

    Article  CAS  Google Scholar 

  7. Zhao G, Hai G, Zhou P, Liu Z, Zhang Y, Peng B, Xia W, Huang X, Wang G. Adv Funct Mater, 2023, 33: 2213170

    Article  CAS  Google Scholar 

  8. Zhou Z, Pan X, Sun L, Xie Y, Zheng J, Li L, Zhao G. Angew Chem Int Ed, 2023, 62: e202216347

    Article  CAS  Google Scholar 

  9. Yang S, Xiang X, He Z, Zhong W, Jia C, Gong Z, Zhang N, Zhao S, Chen Y. Chem Eng J, 2023, 457: 141344

    Article  CAS  Google Scholar 

  10. Lu L, Wen C, Wang H, Li Y, Wu J, Wang C. J Catal, 2023, 424: 1–8

    Article  CAS  Google Scholar 

  11. Zhu B, Dong B, Wang F, Yang Q, He Y, Zhang C, Jin P, Feng L. Nat Commun, 2023, 14: 1686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang B, Fu H, Mu T. Green Chem, 2022, 24: 877–884

    Article  Google Scholar 

  13. Dong J, Zhang FQ, Yang Y, Zhang YB, He H, Huang X, Fan X, Zhang XM. Appl Catal B-Environ, 2019, 243: 693–702

    Article  CAS  Google Scholar 

  14. Li Z, Li X, Zhou H, Xu Y, Xu SM, Ren Y, Yan Y, Yang J, Ji K, Li L, Xu M, Shao M, Kong X, Sun X, Duan H. Nat Commun, 2022, 13: 5009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sun Y, Shin H, Wang F, Tian B, Chiang CW, Liu S, Li X, Wang Y, Tang L, Goddard Iii WA, Ding M. J Am Chem Soc, 2022, 144: 15185–15192

    Article  PubMed  CAS  Google Scholar 

  16. Sun K, Qiao F, Yang J, Li H, Cui Y, Liu PF. Int J Hydrogen Energy, 2022, 47: 27986–27995

    Article  CAS  Google Scholar 

  17. Li S, Wang S, Wang Y, He J, Li K, Xu Y, Wang M, Zhao S, Li X, Zhong X, Wang J. Adv Funct Mater, 2023, 33: 2214488

    Article  CAS  Google Scholar 

  18. Sun Y, Wang J, Qi Y, Li W, Wang C. Adv Sci, 2022, 9: 2200957

    Article  CAS  Google Scholar 

  19. Qu Y, Sun L, Xie F, Hu J, Tan H, Qian J, Shi X, Zhang Y. Mater Today Chem, 2022, 26: 101188

    Article  CAS  Google Scholar 

  20. Xu X, Han JI. Surfs Interfaces, 2022, 30: 101896

    Article  CAS  Google Scholar 

  21. Yang G, Jiao Y, Yan H, Xie Y, Wu A, Dong X, Guo D, Tian C, Fu H. Adv Mater, 2020, 32: 2000455

    Article  CAS  Google Scholar 

  22. Li Y, Jiao Y, Yan H, Yang G, Liu Y, Tian C, Wu A, Fu H. Angew Chem Int Ed, 2023, 62

  23. Ding Y, Li H, Hou Y. Int J Hydrogen Energy, 2018, 43: 19002–19009

    Article  CAS  Google Scholar 

  24. Wang Z, Shen S, Lin Z, Tao W, Zhang Q, Meng F, Gu L, Zhong W. Adv Funct Mater, 2022, 32: 2112832

    Article  CAS  Google Scholar 

  25. Li C, Tian P, Pang H, Gong W, Ye J, Ning G. Sustain Energy Fuels, 2020, 4: 2792–2799

    Article  CAS  Google Scholar 

  26. Liu D, Lu M, Liu D, Yan S, Zhou W, Zhang L, Zou Z. Adv Funct Mater, 2022, 32: 2111234

    Article  CAS  Google Scholar 

  27. Xu G, Chen C, Li M, Ren X, Hu L, Wu C, Zhuang Y, Wang F. Catal Sci Technol, 2022, 12: 3363–3371

    Article  CAS  Google Scholar 

  28. He H, Chen C, Chen Z, Li P, Ding S, Cai M, Zhang M. Sci China Mater, 2019, 63: 216–228

    Article  Google Scholar 

  29. Su H, Song S, Li S, Gao Y, Ge L, Song W, Ma T, Liu J. Appl Catal B-Environ, 2021, 293: 120225

    Article  CAS  Google Scholar 

  30. Hai G, Huang J, Cao L, Kajiyoshi K, Wang L, Feng L, Chen J. J Energy Chem, 2021, 63: 642–650

    Article  CAS  Google Scholar 

  31. Wu H, Kong L, Ji Y, Yan J, Ding Y, Li Y, Lee S-, Liu SF. Adv Mater Inter, 2019, 6

  32. Chen F, Zhang Z, Liang W, Qin X, Zhang Z, Jiang L. Chin Chem Lett, 2022, 33: 1395–1402

    Article  CAS  Google Scholar 

  33. Liu C, Shi XR, Yue K, Wang P, Zhan K, Wang X, Xia BY, Yan Y. Adv Mater, 2023, 35: 2211177

    Article  CAS  Google Scholar 

  34. Zhang Y, Xue Z, Zhao X, Zhang B, Mu T. Green Chem, 2022, 24: 1721–1731

    Article  CAS  Google Scholar 

  35. Wang Y, Jiao Y, Yan H, Yang G, Tian C, Wu A, Liu Y, Fu H. Angew Chem Int Ed, 2022, 61: e202116233

    Article  CAS  Google Scholar 

  36. Lu Y, Liu T, Dong CL, Huang YC, Li Y, Chen J, Zou Y, Wang S. Adv Mater, 2021, 33: 2007056

    Article  CAS  Google Scholar 

  37. Xia B, Wang G, Cui S, Guo J, Xu H, Liu Z, Zang SQ. Chin Chem Lett, 2023, 34: 107810

    Article  CAS  Google Scholar 

  38. Bai Y, Wu Y, Zhou X, Ye Y, Nie K, Wang J, Xie M, Zhang Z, Liu Z, Cheng T, Gao C. Nat Commun, 2022, 13: 6094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wu X, Zhao S, Yin L, Wang L, Li L, Hu F, Peng S. Chin Chem Lett, 2023, 34: 108016

    Article  CAS  Google Scholar 

  40. Yang Y, Xu D, Zhang B, Xue Z, Mu T. Chem Eng J, 2022, 433: 133842

    Article  CAS  Google Scholar 

  41. Qiao C, Usman Z, Cao T, Rafai S, Wang Z, Zhu Y, Cao C, Zhang J. Chem Eng J, 2021, 426: 130873

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22322104, 22171074, 21901064), Heilongjiang Provincial Natural Science Foundation of China (YQ2021B009), the Reform and Development Fund Project of Local University supported by the Central Government (Outstanding Youth Program), and the Basic Research Fund of Heilongjiang University in Heilongjiang Province (2021-KYYWF-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijing Yan.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2023_1818_MOESM1_ESM.pdf

Tuning electronic structure of Ni3S2 with tungsten doping for high-performance electrooxidation of 5-hydroxymethylfurfural

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yang, G., Jiao, Y. et al. Tuning electronic structure of Ni3S2 with tungsten doping for high-performance electrooxidation of 5-hydroxymethylfurfural. Sci. China Chem. 66, 3636–3644 (2023). https://doi.org/10.1007/s11426-023-1818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1818-8

Navigation