Skip to main content
Log in

Synthesis of a class of oxocarbons (C4O4, C5O5) and the application as high-capacity cathode materials for lithium-ion batteries

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Oxocarbons (CnOn, n=3, 4, 5, 6, …) are a series of compounds that are only composed of carbonyl groups. The highly electrophilic carbon atoms in CnOn make their poor stability toward H2O, and thus the synthesis of CnOn is very challenging. Here an oxidation-dehydration method is developed to successfully synthesize C4O4 and C5O5. The combination of nuclear magnetic resonance (13C NMR, 1H NMR), mass spectra, and infrared spectra unambiguously proves the exact chemical structure of C4O4 and C5O5. When used as a cathode material in lithium-ion batteries (LIBs), C5O5 could deliver a high discharge capacity of 698 mAh g-1 (corresponding to an energy density of 1,256 Wh kg-1C5O5). Furthermore, ex-situ infrared spectra and density functional theory (DFT) calculations demonstrate that the carbonyl groups are redox active sites during discharge and charge processes. This work paves the way to achieve the synthesis and battery application of oxocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. West R, Powell DL. J Am Chem Soc, 1963, 85: 2577–2579

    Article  CAS  Google Scholar 

  2. Seitz G, Imming P. Chem Rev, 1992, 92: 1227–1260

    Article  CAS  Google Scholar 

  3. Zhao Q, Wang J, Lu Y, Li Y, Liang G, Chen J. Angew Chem Int Ed, 2016, 55: 12528–12532

    Article  CAS  Google Scholar 

  4. Das N, Ghosh A, Arif AM, Stang PJ. Inorg Chem, 2005, 44: 7130–7137

    Article  CAS  PubMed  Google Scholar 

  5. Chen H, Armand M, Courty M, Jiang M, Grey CP, Dolhem F, Tarascon JM, Poizot P. J Am Chem Soc, 2009, 131: 8984–8988

    Article  CAS  PubMed  Google Scholar 

  6. Patton E, West R. J Am Chem Soc, 1973, 95: 8703–8707

    Article  CAS  Google Scholar 

  7. Yuvaraj K, Douair I, Paparo A, Maron L, Jones C. J Am Chem Soc, 2019, 141: 8764–8768

    Article  CAS  PubMed  Google Scholar 

  8. Ruseva NK, Cherneva ED, Bakalova AG. Arkivoc, 2022, 2022: 285–303

    Article  Google Scholar 

  9. Katsuyama Y, Kobayashi H, Iwase K, Gambe Y, Honma I. Adv Sci, 2022, 9: 2200187

    Article  CAS  Google Scholar 

  10. Yan L, Zhu Q, Qi Y, Xu J, Peng Y, Shu J, Ma J, Wang Y. Angew Chem Int Ed, 2022, 61: e202211107

    Article  CAS  Google Scholar 

  11. Lerch J. Ann Chem Pharm, 1862, 124: 20–42

    Google Scholar 

  12. Person WB, Williams DG. J Phys Chem, 1957, 61: 1017–1018

    Article  CAS  Google Scholar 

  13. Shehab MK, Weeraratne KS, Huang T, Lao KU, El-Kaderi HM. ACS Appl Mater Interfaces, 2021, 13: 15083–15091

    Article  CAS  PubMed  Google Scholar 

  14. Liu R, von Malotki C, Arnold L, Koshino N, Higashimura H, Baumgarten M, Müllen K. J Am Chem Soc, 2011, 133: 10372–10375

    Article  CAS  PubMed  Google Scholar 

  15. Sun Z, Liu H, Shu M, Lin Z, Liu B, Li Y, Li J, Yu T, Yao H, Zhu S, Guan S. ACS Appl Mater Interfaces, 2022, 14: 36700–36710

    Article  CAS  PubMed  Google Scholar 

  16. Meng X, Li M, Jin K, Zhang L, Sun J, Zhang W, Yi C, Yang J, Hao F, Wang GW, Xiao Z, Ding L. Angew Chem Int Ed, 2022, 61: e202207762

    Article  CAS  Google Scholar 

  17. Wang Z, Yin Z, Wu XF. Chem Commun, 2018, 54: 4798–4801

    Article  CAS  Google Scholar 

  18. Lu Y, Hou X, Miao L, Li L, Shi R, Liu L, Chen J. Angew Chem Int Ed, 2019, 58: 7020–7024

    Article  CAS  Google Scholar 

  19. Li S, Lin J, Zhang Y, Zhang S, Jiang T, Hu Z, Liu J, Wu D-Y, Zhang L, Tian Z. Adv Energy Mater, 2022, 12: 2201347

    Article  CAS  Google Scholar 

  20. Zhang D, Lu Y, Wang J, Gong C, Hou X, Zhang X, Chen J. J Phys Chem Lett, 2021, 12: 9848–9852

    Article  CAS  PubMed  Google Scholar 

  21. Schröder D, Schwarz H, Dua S, Blanksby SJ, Bowie JH. Int J Mass Spectrometry, 1999, 188: 17–25

    Article  Google Scholar 

  22. Bao X, Zhou X, Flener Lovitt C, Venkatraman A, Hrovat DA, Gleiter R, Hoffmann R, Borden WT. J Am Chem Soc, 2012, 134: 10259–10270

    Article  CAS  PubMed  Google Scholar 

  23. Guo JC, Hou GL, Li SD, Wang XB. J Phys Chem Lett, 2012, 3: 304–308

    Article  CAS  PubMed  Google Scholar 

  24. Bao X, Hrovat DA, Borden WT, Wang XB. J Am Chem Soc, 2013, 135: 4291–4298

    Article  CAS  PubMed  Google Scholar 

  25. Andrus MB, Hicken EJ, Meredith EL, Simmons BL, Cannon JF. Org Lett, 2003, 5: 3859–3862

    Article  CAS  PubMed  Google Scholar 

  26. Qu C, Long X, Sang Y, Zhang M, Zhao X, Xue XS, Deng J. Org Lett, 2020, 22: 9421–9426

    Article  CAS  PubMed  Google Scholar 

  27. Weigert FJ, Roberts JD. J Am Chem Soc, 1970, 92: 1347–1350

    Article  CAS  Google Scholar 

  28. Pei J, Hsu CC, Wang Y, Yu K. RSC Adv, 2017, 7: 43540–43545

    Article  CAS  Google Scholar 

  29. Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Yoshizawa H, Shimizu A, Kuramoto H, Komae K, Tsuyama H, Yoshida J. J Am Chem Soc, 2012, 134: 19694–19700

    Article  CAS  PubMed  Google Scholar 

  30. Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, Wang B. J Am Chem Soc, 2017, 139: 4258–4261

    Article  CAS  PubMed  Google Scholar 

  31. Song Z, Qian Y, Zhang T, Otani M, Zhou H. Adv Sci, 2015, 2: 1500124

    Article  Google Scholar 

  32. Häupler B, Wild A, Schubert US. Adv Energy Mater, 2015, 5: 1402034

    Article  Google Scholar 

  33. Hu X, Li Z, Zhao Y, Sun J, Zhao Q, Wang J, Tao Z, Chen J. Sci Adv, 2017, 3: e1602396

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang S, Li S, Lu Y. eScience, 2021, 1: 163–177

    Article  Google Scholar 

  35. Peng C, Ning GH, Su J, Zhong G, Tang W, Tian B, Su C, Yu D, Zu L, Yang J, Ng MF, Hu YS, Yang Y, Armand M, Loh KP. Nat Energy, 2017, 2: 17074

    Article  CAS  Google Scholar 

  36. Choi W, Harada D, Oyaizu K, Nishide H. J Am Chem Soc, 2011, 133: 19839–19843

    Article  CAS  PubMed  Google Scholar 

  37. Emanuelsson R, Sterby M, Strømme M, Sjödin M. J Am Chem Soc, 2017, 139: 4828–4834

    Article  CAS  PubMed  Google Scholar 

  38. Luo Y, Liu J, Zhang L. Angew Chem Int Ed, 2022, 61: e202209458

    Article  CAS  Google Scholar 

  39. Cao S, Zhang H, Zhao Y, Zhao Y. eScience, 2021, 1: 28–43

    Article  Google Scholar 

  40. Sun T, Li ZJ, Yang X, Wang S, Zhu YH, Zhang XB. CCS Chem, 2019, 1: 365–372

    Article  CAS  Google Scholar 

  41. Lu Y, Zhang Q, Chen J. Sci China Chem, 2019, 62: 533–548

    Article  CAS  Google Scholar 

  42. Yang H, Lee J, Cheong JY, Wang Y, Duan G, Hou H, Jiang S, Kim ID. Energy Environ Sci, 2021, 14: 4228–4267

    Article  CAS  Google Scholar 

  43. Liu L, Miao L, Li L, Li F, Lu Y, Shang Z, Chen J. J Phys Chem Lett, 2018, 9: 3573–3579

    Article  CAS  PubMed  Google Scholar 

  44. Zins EL. J Phys Chem A, 2020, 124: 1720–1734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFB2402200), the National Natural Science Foundation of China (21905143, 22121005, 22020102002, 21835004), and Frontiers Science Center for New Organic Matter of Nankai University (63181206). The calculations in this work were performed at the TianHe-1 (A), National Supercomputer Center in Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1800_MOESM1_ESM.docx

Synthesis of a Class of Oxocarbons (C4O4, C5O5) and the Application as High-Capacity Cathode Materials for Lithium-Ion Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Lu, Y., Ni, Y. et al. Synthesis of a class of oxocarbons (C4O4, C5O5) and the application as high-capacity cathode materials for lithium-ion batteries. Sci. China Chem. 66, 2780–2784 (2023). https://doi.org/10.1007/s11426-023-1800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1800-5

Navigation