Skip to main content
Log in

Regioselective and asymmetric allylic alkylation of vinyl epoxides for the construction of allylic alcohols via synergistic catalysis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A highly efficient asymmetric allylic alkylation of cyclic and acyclic carbon nucleophiles with vinyl epoxides has been developed, which exhibits good functional group compatibility, high atomic and step economy. This protocol utilizes a strategy of synergistic catalysis with a chiral N,N′-dioxide/NiII complex and an achiral Pd0 catalyst, generating a series of multi-substituted allylic alcohols with a quaternary carbon stereocenter in high yield and excellent regio-, Z/E- and enantioselectivity under mild conditions. Further transformations of the product demonstrate the potential utility of this protocol in the synthesis of allyl alcohol derivatives and natural product analogues. Experimental studies revealed that the N,N′-dioxide/metal complexes play an important role in controlling the Z/E- and enantioselectivity. The density functional theory (DFT) calculations further demonstrated that multiple C-H···π interactions between the aromatic rings of the two substrates and the amide moiety in the ligand stabilized the dominant transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trost BM, Crawley ML. Chem Rev, 2003, 103: 2921–2944

    Article  PubMed  CAS  Google Scholar 

  2. Trost BM, Machacek MR, Aponick A. Acc Chem Res, 2006, 39: 747–760

    Article  PubMed  CAS  Google Scholar 

  3. Trost BM, Fandrick DR. Chemlnform, 2008, 39: 59–72

    Google Scholar 

  4. Lu Z, Ma S. Angew Chem Int Ed, 2008, 47: 258–297

    Article  CAS  Google Scholar 

  5. Liu Y, Han SJ, Liu WB, Stoltz BM. Acc Chem Res, 2015, 48: 740–751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Süsse L, Stoltz BM. Chem Rev, 2021, 121: 4084–4099

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Chem Rev, 2021, 121: 4373–4505

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wei L, Wang CJ. Chem Catal, 2023, 3: 100455

    Article  CAS  Google Scholar 

  9. Wang PS, Gong LZ. Chin J Chem, 2023, 41: 1841–1848

    Article  CAS  Google Scholar 

  10. Trost BM, Thaisrivongs DA, Donckele EJ. Angew Chem Int Ed, 2013, 52: 1523–1526

    Article  CAS  Google Scholar 

  11. Lin HC, Wang PS, Tao ZL, Chen YG, Han ZY, Gong LZ. J Am Chem Soc, 2016, 138: 14354–14361

    Article  PubMed  CAS  Google Scholar 

  12. Hu RB, Wang CH, Ren W, Liu Z, Yang SD. ACS Catal, 2017, 7: 7400–7404

    Article  CAS  Google Scholar 

  13. Rieckhoff S, Meisner J, Kästner J, Frey W, Peters R. Angew Chem Int Ed, 2018, 57: 1404–1408

    Article  CAS  Google Scholar 

  14. Matsui JK, Gutiérrez-Bonet Á, Rotella M, Alam R, Gutierrez O, Molander GA. Angew Chem Int Ed, 2018, 57: 15847–15851

    Article  CAS  Google Scholar 

  15. Fan LF, Luo SW, Chen SS, Wang TC, Wang PS, Gong LZ. Angew Chem Int Ed, 2019, 58: 16806–16810

    Article  CAS  Google Scholar 

  16. Lin HC, Xie PP, Dai ZY, Zhang SQ, Wang PS, Chen YG, Wang TC, Hong X, Gong LZ. J Am Chem Soc, 2019, 141: 5824–5834

    Article  PubMed  CAS  Google Scholar 

  17. Zhang J, Yang WL, Zheng H, Wang Y, Deng WP. Angew Chem Int Ed, 2022, 61: e202117079

    Article  ADS  CAS  Google Scholar 

  18. Jiang R, Zhao QR, Zheng C, You SL. Nat Catal, 2022, 5: 1089–1097

    Article  CAS  Google Scholar 

  19. Xiao L, Chang X, Xu H, Xiong Q, Dang Y, Wang CJ. Angew Chem Int Ed, 2022, 61: e202212948

    Article  CAS  Google Scholar 

  20. Tian K, Chang X, Xiao L, Dong XQ, Wang CJ. Fundamental Res, 2022, doi: https://doi.org/10.1016/j.fmre.2022.07.008

  21. Higashida K, Smaïl V, Nagae H, Carpentier JF, Mashima K. ACS Catal, 2023, 13: 2156–2161

    Article  CAS  Google Scholar 

  22. Qi J, Song T, Yang Z, Sun S, Tung CH, Xu Z. ACS Catal, 2023, 13: 2555–2564

    Article  CAS  Google Scholar 

  23. Nilova A, Mannchen MD, Noel AN, Semenova E, Grenning AJ. Chem Sci, 2023, 14: 2755–2762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ke M, Yu Y, Sun L, Li X, Cao Q, Xiao X, Chen F. Chem Commun, 2023, 59: 2632–2635

    Article  CAS  Google Scholar 

  25. Marshall JA. Chem Rev, 1989, 89: 1503–1511

    Article  CAS  Google Scholar 

  26. He J, Ling J, Chiu P. Chem Rev, 2014, 114: 8037–8128

    Article  PubMed  CAS  Google Scholar 

  27. Du Q, Zhang L, Gao F, Wang L, Zhang W. Chin J Org Chem, 2022, 42: 3240–3262

    Article  CAS  Google Scholar 

  28. Xu J, Song Y, He J, Dong S, Lin L, Feng X. Angew Chem Int Ed, 2021, 60: 14521–14527

    Article  CAS  Google Scholar 

  29. Xu J, Song Y, Yang J, Yang B, Su Z, Lin L, Feng X. Angew Chem Int Ed, 2023, 62: e202217887

    Article  CAS  Google Scholar 

  30. Niu B, Wei Y, Shi M. Org Chem Front, 2021, 8: 3475–3501

    Article  CAS  Google Scholar 

  31. Yang C, Yang ZX, Ding CH, Xu B, Hou XL. Chem Record, 2021, 21: 1442–1454

    Article  CAS  Google Scholar 

  32. Shaghafi MB, Grote RE, Jarvo ER. OrgLett, 2011, 13: 5188–5191

    CAS  Google Scholar 

  33. Liu Z, Feng X, Du H. Org Lett, 2012, 14: 3154–3157

    Article  PubMed  CAS  Google Scholar 

  34. Ma C, Huang Y, Zhao Y. ACS Catal, 2016, 6: 6408–6412

    Article  CAS  Google Scholar 

  35. Cheng Q, Zhang HJ, Yue WJ, You SL. Chem, 2017, 3: 428–436

    Article  CAS  Google Scholar 

  36. Suo JJ, Du J, Liu QR, Chen D, Ding CH, Peng Q, Hou XL. Org Lett, 2017, 19: 6658–6661

    Article  PubMed  CAS  Google Scholar 

  37. Cheng Q, Zhang F, Cai Y, Guo YL, You SL. Angew Chem Int Ed, 2018, 57: 2134–2138

    Article  CAS  Google Scholar 

  38. Wang YN, Yang LC, Rong ZQ, Liu TL, Liu R, Zhao Y. Angew Chem Int Ed, 2018, 57: 1596–1600

    Article  CAS  Google Scholar 

  39. Peng Y, Huo X, Luo Y, Wu L, Zhang W. Angew Chem Int Ed, 2021, 60: 24941–24949

    Article  CAS  Google Scholar 

  40. Sarkar T, Talukdar K, Das BK, Shah TA, Debnath B, Punniyamurthy T. Org Biomol Chem, 2021, 19: 3776–3790

    Article  PubMed  CAS  Google Scholar 

  41. Trost BM, Bunt RC, Lemoine RC, Calkins TL. J Am Chem Soc, 2000, 122: 5968–5976

    Article  CAS  Google Scholar 

  42. Trost BM, Tang W, Schulte JL. Org Lett, 2000, 2: 4013–4015

    Article  PubMed  CAS  Google Scholar 

  43. Miyashita M, Mizutani T, Tadano G, Iwata Y, Miyazawa M, Tanino K. Angew Chem Int Ed, 2005, 44: 5094–5097

    Article  CAS  Google Scholar 

  44. Alibés R, Bayón P, de March P, Figueredo M, Font J, García-García E, González-Gálvez D. Org Lett, 2005, 7: 5107–5109

    Article  PubMed  Google Scholar 

  45. Raghunath M, Zhang X. Tetrahedron Lett, 2005, 46: 8213–8216

    Article  CAS  Google Scholar 

  46. Trost BM, Zhang T. Org Lett, 2006, 8: 6007–6010

    Article  PubMed  CAS  Google Scholar 

  47. Hale KJ, Manaviazar S, George JH, Walters MA, Dalby SM. Org Lett, 2009, 11: 733–736

    Article  PubMed  CAS  Google Scholar 

  48. Mangion I, Strotman N, Drahl M, Imbriglio J, Guidry E. Org Lett, 2009, 11: 3258–3260

    Article  PubMed  CAS  Google Scholar 

  49. Li G, Feng X, Du H. Org Biomol Chem, 2015, 13: 5826–5830

    Article  PubMed  CAS  Google Scholar 

  50. Hu W, Lin Z, Wang C. Org Lett, 2022, 24: 5751–5755

    Article  PubMed  CAS  Google Scholar 

  51. Trost BM, Jiang C. J Am Chem Soc, 2001, 123: 12907–12908

    Article  PubMed  CAS  Google Scholar 

  52. Du C, Li L, Li Y, Xie Z. Angew Chem Int Ed, 2009, 48: 7853–7856

    Article  CAS  Google Scholar 

  53. Doyle MGJ, Gabbey AL, McNutt W, Lundgren RJ. Angew Chem Int Ed, 2021, 60: 26495–26499

    Article  CAS  Google Scholar 

  54. Song C, Zhang HH, Yu S. ACS Catal, 2022, 12: 1428–1432

    Article  CAS  Google Scholar 

  55. Wang Y, Chai J, You C, Zhang J, Mi X, Zhang L, Luo S. J Am Chem Soc, 2020, 142: 3184–3195

    Article  PubMed  CAS  Google Scholar 

  56. Trost BM, Molander GA. J Am Chem Soc, 1981, 103: 5969–5972

    Article  CAS  Google Scholar 

  57. Tsuji J, Kataoka H, Kobayashi Y. Tetrahedron Lett, 1981, 22: 2575–2578

    Article  CAS  Google Scholar 

  58. Zhang X, You R, Wei Z, Jiang X, Yang J, Pan Y, Wu P, Jia Q, Bao Z, Bai L, Jin M, Sumpter B, Fung V, Huang W, Wu Z. Angew Chem Int Ed, 2020, 59: 7969

    Article  CAS  Google Scholar 

  59. Hu B, Zhang X, Mo Y, Li J, Lin LL, Liu X, Feng X. Org Lett, 2020, 22: 1034–1039

    Article  PubMed  CAS  Google Scholar 

  60. Dong P, Chen L, Yang Z, Dong S, Feng X. Org Chem Front, 2021, 8: 6874–6880

    Article  CAS  Google Scholar 

  61. Xu C, Qiao J, Dong S, Zhou Y, Liu X, Feng X. Chem Sci, 2021, 12: 5458–5463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang K, Xu C, Hu X, Zhou Y, Lin L, Feng X. Chem Commun, 2021, 57: 8917–8920

    Article  CAS  Google Scholar 

  63. Lang J, Wang S, He C, Liu X, Feng X. Chem Sci, 2022, 13: 1163–1168

    Article  PubMed  CAS  Google Scholar 

  64. Liu Y, Chen Y, Yihuo A, Zhou Y, Liu X, Lin L, Feng X. ACS Catal, 2022, 12: 1784–1790

    Article  CAS  Google Scholar 

  65. Wang H, Xu Y, Zhang F, Liu Y, Feng X. Angew Chem Int Ed, 2022, 61: e202115715

    Article  ADS  CAS  Google Scholar 

  66. Wang W, Zhang F, Liu Y, Feng X. Angew Chem Int Ed, 2022, 61: e202208837

    Article  ADS  CAS  Google Scholar 

  67. Xu Y, Wang HK, Yang Z, Zhou YQ, Liu YB, Feng XM. Chem, 2022, 8: 2011–2022

    Article  CAS  Google Scholar 

  68. CCDC 2239244 (C26); (b) CCDC 2240471 (E3); (c) CCDC 2257114 (E12)

  69. Singh IP, Milligan KE, Gerwick WH. J Nat Prod, 1999, 62: 1333–1335

    Article  PubMed  CAS  Google Scholar 

  70. Carda M, Rodrıguez S, Castillo E, Bellido A, Dıaz-Oltra S, Alberto Marco J. Tetrahedron, 2003, 59: 857–864

    Article  CAS  Google Scholar 

  71. Doran R, Duggan L, Singh S, Duffy CD, Guiry PJ. Eur J Org Chem, 2011, 2011: 7097–7106

    Article  CAS  Google Scholar 

  72. Jinnouchi H, Nambu H, Fujiwara T, Yakura T. Tetrahedron, 2018, 74: 1059–1070

    Article  CAS  Google Scholar 

  73. Liu XH, Lin LL, Feng XM. Acc Chem Res, 2011, 44: 574–587

    Article  PubMed  CAS  Google Scholar 

  74. Liu X, Zheng H, Xia Y, Lin L, Feng X. Acc Chem Res, 2017, 50: 2621–2631

    Article  PubMed  CAS  Google Scholar 

  75. Wang M-, Li W. Chin J Chem, 2021, 39: 969–984

    Article  CAS  Google Scholar 

  76. Dong S, Liu X, Feng X. Acc Chem Res, 2022, 55: 415–428

    Article  PubMed  CAS  Google Scholar 

  77. Liu Y, Liu X, Feng X. Chem Sci, 2022, 13: 12290–12308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Chen DF, Gong LZ. Org Chem Front, 2023, 10: 3676–3683

    Article  CAS  Google Scholar 

  79. Zhang X, Wu W, Cao W, Yu H, Xu X, Liu X, Feng X. Angew Chem Int Ed, 2020, 59: 4846–4850

    Article  CAS  Google Scholar 

  80. Hu X, Tang X, Zhang X, Lin L, Feng X. Nat Commun, 2021, 12: 3012

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  81. He C, Wu Z, Zhou Y, Cao W, Feng X. Org Chem Front, 2022, 9: 703–708

    Article  CAS  Google Scholar 

  82. Wang Y, Yihuo A, Wang L, Dong S, Feng X. Sci China Chem, 2022, 65: 546–553

    Article  CAS  Google Scholar 

  83. Zhan T, Yang L, Chen Q, Weng R, Liu X, Feng X. CCS Chem, 2023, 5: 2101–2110

    Article  CAS  Google Scholar 

  84. Wu Z, Zhang X, Xu N, Liu X, Feng X. ACS Catal, 2023, 13: 815–823

    Article  CAS  Google Scholar 

  85. Marenich AV, Cramer CJ, Truhlar DG. JPhys Chem B, 2009, 113: 6378–6396

    Article  CAS  Google Scholar 

  86. Zhao Y, Schultz NE, Truhlar DG. J Chem Theor Comput, 2006, 2: 364–382

    Article  Google Scholar 

  87. Weigend F, Ahlrichs R. Phys Chem Chem Phys, 2005, 7: 3297–3305

    Article  PubMed  CAS  Google Scholar 

  88. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. Theoret Chim Acta, 1990, 77: 123–141

    Article  CAS  Google Scholar 

  89. Jensen F. J Chem Theor Comput, 2006, 2: 1360–1369

    Article  CAS  Google Scholar 

  90. Grimme S. J Comput Chem, 2006, 27: 1787–1799

    Article  PubMed  CAS  Google Scholar 

  91. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, MontgomeryJr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J. Fox DJ. Gaussian09, Revision D.01. Wallingford, CT: Gaussian, Inc., 2013

    Google Scholar 

  92. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  93. Lu T, Chen Q. J Comput Chem, 2022, 43: 539–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U19A2014) and Sichuan University (2020SCUNL204). We are grateful to Dr Yuqiao Zhou (Sichuan University) for the X-ray single crystal diffraction analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Feng or Xiaohua Liu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Yang, L., Li, Y. et al. Regioselective and asymmetric allylic alkylation of vinyl epoxides for the construction of allylic alcohols via synergistic catalysis. Sci. China Chem. 67, 542–550 (2024). https://doi.org/10.1007/s11426-023-1794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1794-2

Navigation