Skip to main content
Log in

Switching from 2-pyridination to difluoromethylation: ligand-enabled nickel-catalyzed reductive difluoromethylation of aryl iodides with difluoromethyl 2-pyridyl sulfone

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The divergent reductive cross-coupling with an ambident electrophile is rare. Previously, we demonstrated a nickel-catalyzed reductive 2-pyridination of aryl iodides with difluoromethyl 2-pyridyl sulfone (2-PySO2CF2H) via selective C(sp2)–S bond cleavage of the sulfone by using a phosphine ligand. In this communication, we report a novel nickel-catalyzed reductive coupling of aryl iodides and 2-PySO2CF2H reagent, which constitutes a new method for aromatic difluoromethylation. The use of a tridentate terpyridine ligand is pivotal for the selective C(sp3)–S bond cleavage of the sulfone. This method employs readily available nickel catalyst and 2-PySO2CF2H as the difluoromethylation reagent, providing a facile access to difluoromethylarenes under mild reaction conditions without pre-generation of arylmetal reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Weix DJ. Acc Chem Res, 2015, 48: 1767–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lucas EL, Jarvo ER. Nat Rev Chem, 2017, 1: 0065

    Article  Google Scholar 

  3. Liu J, Ye Y, Sessler JL, Gong H. Acc Chem Res, 2020, 53: 1833–1845

    Article  CAS  PubMed  Google Scholar 

  4. Duan A, Xiao F, Lan Y, Niu L. Chem Soc Rev, 2022, 51: 9986–10015

    Article  CAS  PubMed  Google Scholar 

  5. Pang X, Su PF, Shu XZ. Acc Chem Res, 2022, 55: 2491–2509

    Article  CAS  PubMed  Google Scholar 

  6. Yi L, Ji T, Chen KQ, Chen XY, Rueping M. CCS Chem, 2022, 4: 9–30

    Article  CAS  Google Scholar 

  7. Muñiz K, Martínez C. In: Metal Catalyzed Cross-Coupling Reactions and More. de Meijere A, Bräse S, Oestreich M, Eds. Wiley-VCH: Weinheim, 2014. 1259–1314

    Chapter  Google Scholar 

  8. Goldfogel MJ, Huang L, Weix DJ. in: Nickel Catalysis in Organic Synthesis: Methods and Reactions. Weinheim: Wiley-VCH, 2020. 183–222

    Book  Google Scholar 

  9. Everson DA, Shrestha R, Weix DJ. J Am Chem Soc, 2010, 132: 920–921

    Article  CAS  PubMed  Google Scholar 

  10. Ackerman LKG, Martinez Alvarado JI, Doyle AG. J Am Chem Soc, 2018, 140: 14059–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheng J, Ni HQ, Zhang HR, Zhang KF, Wang YN, Wang XS. Angew Chem Int Ed, 2018, 57: 7634–7639

    Article  CAS  Google Scholar 

  12. Girvin ZC, Andrews MK, Liu X, Gellman SH. Science, 2019, 366: 1528–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cong F, Lv XY, Day CS, Martin R. J Am Chem Soc, 2020, 142: 20594–20599

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Zheng P, Wu X, Li Y, Xu T. J Am Chem Soc, 2022, 144: 3989–3997

    Article  CAS  PubMed  Google Scholar 

  15. Palkowitz MD, Laudadio G, Kolb S, Choi J, Oderinde MS, Ewing TEH, Bolduc PN, Chen TY, Zhang H, Cheng PTW, Zhang B, Mandler MD, Blasczak VD, Richter JM, Collins MR, Schioldager RL, Bravo M, Dhar TGM, Vokits B, Zhu Y, Echeverria PG, Poss MA, Shaw SA, Clementson S, Petersen NN, Mykhailiuk PK, Baran PS. J Am Chem Soc, 2022, 144: 17709–17720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu X, Cheng-Sánchez I, Cuesta-Galisteo S, Nevado C. J Am Chem Soc, 2023, 145: 6270–6279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petrini M. Chem Rev, 2005, 105: 3949–3977

    Article  CAS  PubMed  Google Scholar 

  18. El-Awa A, Noshi MN, du Jourdin XM, Fuchs PL. Chem Rev, 2009, 109: 2315–2349

    Article  CAS  PubMed  Google Scholar 

  19. Alba ANR, Companyó X, Rios R. Chem Soc Rev, 2010, 39: 2018–2033

    Article  CAS  PubMed  Google Scholar 

  20. Trost BM, Kalnmals CA. Chem Eur J, 2019, 25: 201902019

    Article  Google Scholar 

  21. Sivaguru P, Bi X. Sci China Chem, 2021, 64: 1614–1629

    Article  CAS  Google Scholar 

  22. Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Chem Rev, 2021, 121: 12548–12680

    Article  CAS  PubMed  Google Scholar 

  23. Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Chem Soc Rev, 2022, 51: 6774–6823

    Article  CAS  PubMed  Google Scholar 

  24. Paul B, Paul H, Chatterjee I. Synthesis, 2022, 54: 5409–5422

    Article  CAS  Google Scholar 

  25. Nambo M, Maekawa Y, Crudden CM. ACS Catal, 2022, 12: 3013–3032

    Article  CAS  Google Scholar 

  26. Miao W, Ni C, Xiao P, Jia R, Zhang W, Hu J. Org Lett, 2021, 23: 711–715

    Article  CAS  PubMed  Google Scholar 

  27. Hughes JME, Fier PS. Org Lett, 2019, 21: 5650–5654

    Article  CAS  PubMed  Google Scholar 

  28. Huang X, Tang L, Song Z, Jiang S, Liu X, Ma M, Chen B, Ma Y. Org Lett, 2023, 25: 1198–1203

    Article  CAS  PubMed  Google Scholar 

  29. Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J Am Chem Soc, 2017, 139: 9325–9332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zafrani Y, Sod-Moriah G, Yeffet D, Berliner A, Amir D, Marciano D, Elias S, Katalan S, Ashkenazi N, Madmon M, Gershonov E, Saphier S. J Med Chem, 2019, 62: 5628–5637

    Article  CAS  PubMed  Google Scholar 

  31. Rong J, Ni C, Hu J. Asian J Org Chem, 2017, 6: 139–152

    Article  CAS  Google Scholar 

  32. Yerien DE, Barata-Vallejo S, Postigo A. Chem Eur J, 2017, 23: 14676–14701

    Article  CAS  PubMed  Google Scholar 

  33. Sap JBI, Meyer CF, Straathof NJW, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Chem Soc Rev, 2021, 50: 8214–8247

    Article  CAS  PubMed  Google Scholar 

  34. Britton R, Gouverneur V, Lin JH, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Nat Rev Methods Primers, 2021, 1: 47

    Article  CAS  Google Scholar 

  35. Bao ZP, Zhang Y, Wang LC, Wu XF. Sci China Chem, 2023, 66: 139–146

    Article  CAS  Google Scholar 

  36. Xu C, Guo WH, He X, Guo YL, Zhang XY, Zhang X. Nat Commun, 2018, 9: 1170

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gao X, He X, Zhang X. Chin J Org Chem, 2019, 39: 215–222

    Article  CAS  Google Scholar 

  38. Zhang X, Sun S, Sang Y, Xue X, Min Q, Zhang X. Angew Chem Int Ed, 2023, 62: e202306501

    Article  CAS  Google Scholar 

  39. Bacauanu V, Cardinal S, Yamauchi M, Kondo M, Fernández DF, Remy R, MacMillan DWC. Angew Chem Int Ed, 2018, 57: 12543–12548

    Article  CAS  Google Scholar 

  40. Prakash GKS, Hu J. Acc Chem Res, 2007, 40: 921–930

    Article  CAS  PubMed  Google Scholar 

  41. Hu J. J Fluorine Chem, 2009, 130: 1130–1139

    Article  CAS  Google Scholar 

  42. Ni C, Hu M, Hu J. Chem Rev, 2015, 115: 765–825

    Article  CAS  PubMed  Google Scholar 

  43. Wei Z, Miao W, Ni C, Hu J. Angew Chem Int Ed, 2021, 60: 13197–13602

    Google Scholar 

  44. Wei Z, Zheng W, Wan X, Hu J. Angew Chem Int Ed, 2023, 62: e202308816

    Article  CAS  Google Scholar 

  45. Miao W, Zhao Y, Ni C, Gao B, Zhang W, Hu J. J Am Chem Soc, 2018, 140: 880–883

    Article  CAS  PubMed  Google Scholar 

  46. Merchant RR, Edwards JT, Qin T, Kruszyk MM, Bi C, Che G, Bao DH, Qiao W, Sun L, Collins MR, Fadeyi OO, Gallego GM, Mousseau JJ, Nuhant P, Baran PS. Science, 2018, 360: 75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biswas S, Weix DJ. J Am Chem Soc, 2013, 135: 16192–16197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim S, Goldfogel MJ, Gilbert MM, Weix DJ. J Am Chem Soc, 2020, 142: 9902–9907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones GD, Martin JL, McFarland C, Allen OR, Hall RE, Haley AD, Bra-don RJ, Konovalova T, Desrochers PJ, Pulay P, Vicic DA. J Am Chem Soc, 2006, 128: 13175–13183

    Article  CAS  PubMed  Google Scholar 

  50. Burton DJ, Hartgraves GA. J Fluorine Chem, 2007, 128: 1198–1215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFF0701700), the National Natural Science Foundation of China (22271299, 22261132514), the Natural Science Foundation of Shandong Province (ZR2021LFG006), and the State Key Laboratory of Fluorine-Containing Functional Membrane Materials. Shandong Dongyue Polymer Materials Co. Ltd. is acknowledged for a gift of difluoromethyl 2-pyridyl sulfone (2-PySO2CF2H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbo Hu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1791_MOESM1_ESM.pdf

Switching from 2-Pyridination to Difluoromethylation: Ligand-Enabled Nickel-Catalyzed Reductive Difluoromethylation of Aryl Iodides with Difluoromethyl 2-Pyridyl Sulfone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Luo, Q., Wei, Z. et al. Switching from 2-pyridination to difluoromethylation: ligand-enabled nickel-catalyzed reductive difluoromethylation of aryl iodides with difluoromethyl 2-pyridyl sulfone. Sci. China Chem. 66, 2785–2790 (2023). https://doi.org/10.1007/s11426-023-1791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1791-3

Navigation