Skip to main content
Log in

Deactivation and regeneration of the commercial Cu/ZnO/Al2O3 catalyst in low-temperature methanol steam reforming

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cu-based catalysts with excellent activity at low temperatures are widely used for methanol steam reforming (MSR) but suffer from deactivation problems. The present work aims to elucidate the deactivation and regeneration mechanisms of the commercial Cu/ZnO/Al2O3 catalyst in low temperature MSR. By employing a series of (quasi) in situ characterization methods, it is found that the deactivation of the catalyst at a high weight hourly space velocity (WHSV) and a low reaction temperature is mainly due to the poisoning of Cu species associated with surface-oxygenated species with less Cu sintering, rather than carbon deposition, and strong metal-support interaction (SMSI). An in situ regeneration method was developed for the deactivated commercial Cu/ZnO/Al2O3 catalyst via the simultaneous supply of O2. It is shown that the addition of O2 (≥1 vol%) can reverse the deactivation caused by surface-oxygenated poisoning due to the weak interaction between formed surface copper oxide and surface-oxygenated species, facilitating their desorption, but not deactivation caused by sintering, thereby partially restoring the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia G, Arriola E, Chen WH, De Luna MD. Energy, 2021, 217: 119384

    Article  CAS  Google Scholar 

  2. Herdem MS, Sinaki MY, Farhad S, Hamdullahpur F. Int J Energy Res, 2019, 43: 5076–5105

    Article  CAS  Google Scholar 

  3. Jiang X, Nie X, Guo X, Song C, Chen JG. Chem Rev, 2020, 120: 7984–8034

    Article  PubMed  CAS  Google Scholar 

  4. Wang Y, Kattel S, Gao W, Li K, Liu P, Chen JG, Wang H. Nat Commun, 2019, 10: 1166

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhou H, Chen Z, López AV, López ED, Lam E, Tsoukalou A, Willinger E, Kuznetsov DA, Mance D, Kierzkowska A, Donat F, Abdala PM, Comas-Vives A, Copéret C, Fedorov A, Müller CR. Nat Catal, 2021, 4: 860–871

    Article  CAS  Google Scholar 

  6. Palo DR, Dagle RA, Holladay JD. Chem Rev, 2007, 107: 3992–4021

    Article  PubMed  CAS  Google Scholar 

  7. Sá S, Silva H, Brandão L, Sousa JM, Mendes A. Appl Catal B-Environ, 2010, 99: 43–57

    Article  Google Scholar 

  8. Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li YW, Shi C, Wen XD, Ma D. Nature, 2017, 544: 80–83

    Article  PubMed  CAS  Google Scholar 

  9. Iulianelli A, Ribeirinha P, Mendes A, Basile A. Renew Sustain Energy Rev, 2014, 29: 355–368

    Article  CAS  Google Scholar 

  10. Ribeirinha P, Mateos-Pedrero C, Boaventura M, Sousa J, Mendes A. Appl Catal B-Environ, 2018, 221: 371–379

    Article  CAS  Google Scholar 

  11. Chen Z, Ge H, Wang P, Sun J, Abbas M, Chen J. Mol Catal, 2020, 488: 110919

    Article  CAS  Google Scholar 

  12. Agarwal V, Patel S, Pant KK. Appl Catal A-Gen, 2005, 279: 155–164

    Article  CAS  Google Scholar 

  13. Li D, Xu F, Tang X, Dai S, Pu T, Liu X, Tian P, Xuan F, Xu Z, Wachs IE, Zhu M. Nat Catal, 2022, 5: 99–108

    Article  CAS  Google Scholar 

  14. Zhu M, Tian P, Kurtz R, Lunkenbein T, Xu J, Schlögl R, Wachs IE, Han YF. Angew Chem Int Ed, 2019, 58: 9083–9087

    Article  CAS  Google Scholar 

  15. Lunkenbein T, Girgsdies F, Kandemir T, Thomas N, Behrens M, Schlögl R, Frei E. Angew Chem Int Ed, 2016, 55: 12708–12712

    Article  CAS  Google Scholar 

  16. Prašnikar A, Pavlišič A, Ruiz-Zepeda F, Kovač J, Likozar B. Ind Eng Chem Res, 2019, 58: 13021–13029

    Article  Google Scholar 

  17. Tonelli F, Gorriz O, Tarditi A, Cornaglia L, Arrúa L, Cristina Abello M. Int J Hydrogen Energy, 2015, 40: 13379–13387

    Article  CAS  Google Scholar 

  18. Das D, Llorca J, Dominguez M, Colussi S, Trovarelli A, Gayen A. Int J Hydrogen Energy, 2015, 40: 10463–10479

    Article  CAS  Google Scholar 

  19. Fazeli A, Khodadadi AA, Mortazavi Y. Iran J Chem Chem Eng, 2013, 32: 45–59

    CAS  Google Scholar 

  20. Vivas-Báez JC, Servia A, Pirngruber GD, Dubreuil AC, Pérez-Martínez DJ. Fuel, 2021, 303: 120681

    Article  Google Scholar 

  21. Wang F, Zhang H, He D. Environ Tech, 2014, 35: 347–354

    Article  Google Scholar 

  22. Reichenbach T, Walter M, Moseler M, Hammer B, Bruix A. J Phys Chem C, 2019, 123: 30903–30916

    Article  CAS  Google Scholar 

  23. Kuld S, Thorhauge M, Falsig H, Elkjaer CF, Helveg S, Chorkendorff I, Sehested J. Science, 2016, 352: 969–974

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Z, Chen X, Kang J, Yu Z, Tian J, Gong Z, Jia A, You R, Qian K, He S, Teng B, Cui Y, Wang Y, Zhang W, Huang W. Nat Commun, 2021, 12: 4331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jin S, Li D, Wang Z, Wang Y, Sun L, Zhu M. Catal Sci Technol, 2022, 12: 7003–7009

    Article  CAS  Google Scholar 

  26. Twigg MV, Spencer MS. Top Catal, 2003, 22: 191–203

    Article  CAS  Google Scholar 

  27. Ferrari AC, Robertson J. Phys Rev B, 2000, 61: 14095–14107

    Article  CAS  Google Scholar 

  28. Ploner K, Watschinger M, Kheyrollahi Nezhad PD, Götsch T, Schlicker L, Köck EM, Gurlo A, Gili A, Doran A, Zhang L, Köwitsch N, Armbrüster M, Vanicek S, Wallisch W, Thurner C, Klötzer B, Penner S. J Catal, 2020, 391: 497–512

    Article  CAS  Google Scholar 

  29. Kriegel R, Ivarsson DCA, Armbrüster M. ChemCatChem, 2018, 10: 2664–2672

    Article  CAS  Google Scholar 

  30. Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R. Angew Chem Int Ed, 2007, 46: 7324–7327

    Article  CAS  Google Scholar 

  31. Kniep BL, Ressler T, Rabis A, Girgsdies F, Baenitz M, Steglich F, Schlögl R. Angew Chem Int Ed, 2004, 43: 112–115

    Article  Google Scholar 

  32. Schott V, Oberhofer H, Birkner A, Xu M, Wang Y, Muhler M, Reuter K, Wöll C. Angew Chem Int Ed, 2013, 52: 11925–11929

    Article  CAS  Google Scholar 

  33. Zhang Z, Wang SS, Song R, Cao T, Luo L, Chen X, Gao Y, Lu J, Li WX, Huang W. Nat Commun, 2017, 8: 488

    Article  PubMed  PubMed Central  Google Scholar 

  34. Turco M, Bagnasco G, Cammarano C, Senese P, Costantino U, Sisani M. Appl Catal B-Environ, 2007, 77: 46–57

    Article  CAS  Google Scholar 

  35. He X, Wang Y, Zhang X, Dong M, Wang G, Zhang B, Niu Y, Yao S, He X, Liu H. ACS Catal, 2019, 9: 2213–2221

    Article  CAS  Google Scholar 

  36. Chi H, Andolina CM, Li J, Curnan MT, Saidi WA, Zhou G, Yang JC, Veser G. Appl Catal A-Gen, 2018, 556: 64–72

    Article  CAS  Google Scholar 

  37. Strohmeier B, Hercules DM. J Catal, 1984, 86: 266–279

    Article  CAS  Google Scholar 

  38. Wang Y, Shen Y, Zhao Y, Lv J, Wang S, Ma X. ACS Catal, 2015, 5: 6200–6208

    Article  CAS  Google Scholar 

  39. Frank B, Jentoft F, Soerijanto H, Krohnert J, Schlogl R, Schomacker R. J Catal, 2007, 246: 177–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (22078089), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Shanghai Sailing Program (19YF1410600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zhu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, Z., Jin, S. et al. Deactivation and regeneration of the commercial Cu/ZnO/Al2O3 catalyst in low-temperature methanol steam reforming. Sci. China Chem. 66, 3645–3652 (2023). https://doi.org/10.1007/s11426-023-1789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1789-3

Navigation