Skip to main content
Log in

Pd-catalyzed diastereoselective 1,1-diarylation of 1,1-disubstituted alkenes enabling the modular synthesis of 1,1,2,2-tetraarylethanes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The highly diastereoselective dicarbofunctionalization of substituted olefins still remains a daunting challenge in synthetic chemistry. Herein, we report a Pd-catalyzed diastereoselective 1,1-diarylation of 1,1-diarylethylene with chelation group free to enable the modular synthesis of smart material candidates, 1,1,2,2-tetraarylethanes (TAEs), which represent the first protocol by assembling four different aryl groups into ethane motif. Preliminary mechanistic experiments suggest that the crucial Pd-H species generated in situ do not disengage from the alkene intermediate during the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oxtoby LJ, Vasquez AM, Kang T, Li Z-Q, Engle KM. Metal-Mediated and Catalyzed Difunctionalization of Unsaturated Organics. Comprehensive Organometallic Chemistry IV. Volume 13: Applications II. d- and f-Block Metal Complexes in Organic Synthesis-part 2. Amsterdam: Elsevier, 2022. 132–193

    Google Scholar 

  2. Wickham LM, Giri R. Acc Chem Res, 2021, 54: 3415–3437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang H, Koh MJ. Cell Rep Phys Sci, 2022, 3: 100901–100909

    Article  CAS  Google Scholar 

  4. Wang Z, Bai X, Li B. Chin J Chem, 2019, 37: 1174–1180

    Article  CAS  Google Scholar 

  5. Zhu S, Zhao X, Li H, Chu L. Chem Soc Rev, 2021, 50: 10836–10856

    Article  PubMed  CAS  Google Scholar 

  6. Luo Y, Xu C, Zhang X. Chin J Chem, 2020, 38: 1371–1394

    Article  CAS  Google Scholar 

  7. Qi X, Diao T. ACS Catal, 2020, 10: 8542–8556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li ZL, Fang GC, Gu QS, Liu XY. Chem Soc Rev, 2020, 49: 32–48

    Article  PubMed  CAS  Google Scholar 

  9. Ping Y, Song H, Kong W. Chin J Org Chem, 2022, 42: 3302–3321

    Article  CAS  Google Scholar 

  10. Liao L, Jana R, Urkalan KB, Sigman MS. J Am Chem Soc, 2011, 133: 5784–5787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science, 2016, 351: 70–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Angew Chem Int Ed, 2021, 60: 19092–19096

    Article  CAS  Google Scholar 

  13. Zhang WB, Chen G, Shi SL. J Am Chem Soc, 2022, 144: 130–136

    Article  PubMed  CAS  Google Scholar 

  14. Liu Z, Zeng T, Yang KS, Engle KM. J Am Chem Soc, 2016, 138: 15122–15125

    Article  PubMed  CAS  Google Scholar 

  15. Shrestha B, Basnet P, Dhungana RK, Kc S, Thapa S, Sears JM, Giri R. J Am Chem Soc, 2017, 139: 10653–10656

    Article  PubMed  CAS  Google Scholar 

  16. Gao P, Chen LA, Brown MK. J Am Chem Soc, 2018, 140: 10653–10657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Myhill JA, Wilhelmsen CA, Zhang L, Morken JP. J Am Chem Soc, 2018, 140: 15181–15185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Thapa S, Dhungana RK, Magar RT, Shrestha B, Kc S, Giri R. Chem Sci, 2018, 9: 904–909

    Article  PubMed  CAS  Google Scholar 

  19. Basnet P, Kc S, Dhungana RK, Shrestha B, Boyle TJ, Giri R. J Am Chem Soc, 2018, 140: 15586–15590

    Article  PubMed  CAS  Google Scholar 

  20. Derosa J, Kleinmans R, Tran VT, Karunananda MK, Wisniewski SR, Eastgate MD, Engle KM. J Am Chem Soc, 2018, 140: 17878–17883

    Article  PubMed  CAS  Google Scholar 

  21. Anthony D, Lin Q, Baudet J, Diao T. Angew Chem Int Ed, 2019, 58: 3198–3202

    Article  CAS  Google Scholar 

  22. Zhang Y, Chen G, Zhao D. Chem Sci, 2019, 10: 7952–7957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Derosa J, Kang T, Tran VT, Wisniewski SR, Karunananda MK, Jankins TC, Xu KL, Engle KM. Angew Chem Int Ed, 2020, 59: 1201–1205

    Article  CAS  Google Scholar 

  24. Kleinmans R, Apolinar O, Derosa J, Karunananda MK, Li ZQ, Tran VT, Wisniewski SR, Engle KM. Org Lett, 2021, 23: 5311–5316

    Article  PubMed  CAS  Google Scholar 

  25. Apolinar O, Kang T, Alturaifi TM, Bedekar PG, Rubel CZ, Derosa J, Sanchez BB, Wong QN, Sturgell EJ, Chen JS, Wisniewski SR, Liu P, Engle KM. J Am Chem Soc, 2022, 144: 19337–19343

    Article  PubMed  CAS  Google Scholar 

  26. Dong Z, Tang Q, Xu C, Chen L, Ji H, Zhou S, Song L, Chen L. Angew Chem Int Ed, 2023, 62: e202218286

    Article  CAS  Google Scholar 

  27. Saini V, Sigman MS. J Am Chem Soc, 2012, 134: 11372–11375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jeon J, Ryu H, Lee C, Cho D, Baik MH, Hong S. J Am Chem Soc, 2019, 141: 10048–10059

    Article  PubMed  CAS  Google Scholar 

  29. Werner EW, Urkalan KB, Sigman MS. Org Lett, 2010, 12: 2848–2851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Urkalan K, Sigman M. Angew Chem Int Ed, 2009, 48: 3146–3149

    Article  CAS  Google Scholar 

  31. Saini V, Liao L, Wang Q, Jana R, Sigman MS. Org Lett, 2013, 15: 5008–5011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Orlandi M, Hilton MJ, Yamamoto E, Toste FD, Sigman MS. J Am Chem Soc, 2017, 139: 12688–12695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yamamoto E, Hilton MJ, Orlandi M, Saini V, Toste FD, Sigman MS. J Am Chem Soc, 2016, 138: 15877–15880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shao H, Zhao Y, Wang S, Chen R, Zhou JS, Wu X. Org Lett, 2022, 24: 6520–6524

    Article  PubMed  CAS  Google Scholar 

  35. Li Z, Wu D, Ding C, Yin G. CCS Chem, 2021, 3: 576–582

    Article  CAS  Google Scholar 

  36. Li Y, Wei H, Wu D, Li Z, Wang W, Yin G. ACS Catal, 2020, 10: 4888–4894

    Article  CAS  Google Scholar 

  37. Sun C, Li Y, Yin G. Angew Chem Int Ed, 2022, 61: e202209076

    Article  CAS  Google Scholar 

  38. Sun S, Talavera L, Spieß P, Day CS, Martin R. Angew Chem Int Ed, 2021, 60: 11740–11744

    Article  CAS  Google Scholar 

  39. Li Y, Pang H, Wu D, Li Z, Wang W, Wei H, Fu Y, Yin G. Angew Chem Int Ed, 2019, 58: 8872–8876

    Article  CAS  Google Scholar 

  40. Wang W, Ding C, Yin G. Nat Catal, 2020, 3: 951–958

    Article  CAS  Google Scholar 

  41. Satterfield AD, Kubota A, Sanford MS. Org Lett, 2011, 13: 1076–1079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kalyani D, Satterfield AD, Sanford MS. J Am Chem Soc, 2010, 132: 8419–8427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kalyani D, Sanford MS. J Am Chem Soc, 2008, 130: 2150–2151

    Article  PubMed  CAS  Google Scholar 

  44. Li Y, Li Y, Shi H, Wei H, Li H, Funes-Ardoiz I, Yin G. Science, 2022, 376: 749–753

    Article  PubMed  CAS  Google Scholar 

  45. Li Z, Shi H, Chen X, Peng L, Li Y, Yin G. J Am Chem Soc, 2023, 145: 13603–13614

    Article  PubMed  CAS  Google Scholar 

  46. Bergmann AM, Dorn SK, Smith KB, Logan KM, Brown MK. Angew Chem Int Ed, 2019, 58: 1719–1723

    Article  CAS  Google Scholar 

  47. Xi Y, Huang W, Wang C, Ding H, Xia T, Wu L, Fang K, Qu J, Chen Y. J Am Chem Soc, 2022, 144: 8389–8398

    Article  PubMed  CAS  Google Scholar 

  48. Xia T, Xi Y, Ding H, Zhang Y, Fang K, Wu X, Qu J, Chen Y. Chem Commun, 2022, 58: 9282–9285

    Article  CAS  Google Scholar 

  49. Wu X, Turlik A, Luan B, He F, Qu J, Houk KN, Chen Y. Angew Chem Int Ed, 2022, 61: e202207536

    Article  CAS  Google Scholar 

  50. Wu X, Luan B, Zhao W, He F, Wu X, Qu J, Chen Y. Angew Chem Int Ed, 2022, 61: e202111598

    Article  CAS  Google Scholar 

  51. Teng S, Chi YR, Zhou JS. Angew Chem Int Ed, 2021, 60: 4491–4495

    Article  CAS  Google Scholar 

  52. Teng S, Jiao Z, Chi YR, Zhou JS. Angew Chem Int Ed, 2020, 59: 2246–2250

    Article  CAS  Google Scholar 

  53. Wu L, Wang F, Chen P, Liu G. J Am Chem Soc, 2019, 141: 1887–1892

    Article  PubMed  CAS  Google Scholar 

  54. Wu D, Wu L, Chen P, Liu G. Chin J Chem, 2022, 40: 1699–1704

    Article  CAS  Google Scholar 

  55. Wang L, Wang C. Org Lett, 2020, 22: 8829–8835

    Article  PubMed  CAS  Google Scholar 

  56. Wang H, Liu CF, Martin RT, Gutierrez O, Koh MJ. Nat Chem, 2022, 14: 188–195

    Article  PubMed  Google Scholar 

  57. Wang H, Liu CF, Tan TD, Khoo KRB, Koh MJ. ACS Catal, 2022, 12: 724–732

    Article  Google Scholar 

  58. Liu CF, Wang ZC, Luo X, Lu J, Ko CHM, Shi SL, Koh MJ. Nat Catal, 2022, 5: 934–942

    Article  CAS  Google Scholar 

  59. Li Y, Wu D, Cheng H, Yin G. Angew Chem Int Ed, 2020, 59: 7990–8003

    Article  CAS  Google Scholar 

  60. Zhang M, Ji Y, Zhang C. Chin J Chem, 2022, 40: 1608–1622

    Article  CAS  Google Scholar 

  61. Belal M, Li Z, Lu X, Yin G. Sci China Chem, 2021, 64: 513–533

    Article  CAS  Google Scholar 

  62. Dhungana RK, Sapkota RR, Niroula D, Giri R. Chem Sci, 2020, 11: 9757–9774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sommer H, Juliá-Hernández F, Martin R, Marek I. ACS Cent Sci, 2018, 4: 153–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Basnet P, Dhungana RK, Thapa S, Shrestha B, Kc S, Sears JM, Giri R. J Am Chem Soc, 2018, 140: 7782–7786

    Article  PubMed  CAS  Google Scholar 

  65. Li W, Boon JK, Zhao Y. Chem Sci, 2018, 9: 600–607

    Article  PubMed  CAS  Google Scholar 

  66. Ding C, Ren Y, Sun C, Long J, Yin G. J Am Chem Soc, 2021, 143: 20027–20034

    Article  PubMed  CAS  Google Scholar 

  67. Zhu D, Xu W, Pu M, Wu YD, Chi YR, Zhou JS. Org Lett, 2021, 23: 7064–7068

    Article  PubMed  CAS  Google Scholar 

  68. Pang H, Wu D, Yin G. Chin J Org Chem, 2021, 41: 849

    Article  CAS  Google Scholar 

  69. Zhang H, Zheng X, Xie N, He Z, Liu J, Leung NLC, Niu Y, Huang X, Wong KS, Kwok RTK, Sung HHY, Williams ID, Qin A, Lam JWY, Tang BZ. J Am Chem Soc, 2017, 139: 16264–16272

    Article  PubMed  CAS  Google Scholar 

  70. Li Z, Yin S, Tan G, Zhao S, Shi Z, Jing B, Zhai L, Tan Y. Colloid Polym Sci, 2016, 294: 1943–1958

    Article  CAS  Google Scholar 

  71. Tojo Y, Arakwa Y, Watanabe J, Konishi G. Polym Chem, 2013, 4: 3807–3812

    Article  CAS  Google Scholar 

  72. Sumi K, Niko Y, Tokumaru K, Konishi G. Chem Commun, 2013, 49: 3893–3895

    Article  CAS  Google Scholar 

  73. Li SMK. Process for Preparing Tetraphenolic Compounds. US Patent, US19915012016, 1991-04-30

  74. Kimura Y, Noda K, Ogiwara A. Method for Producing Tetrakis(4-Hydroxyphenyl) Ethane Compound. JP Patent, JP2005263676, 2005-09-29

  75. Takemura K. Method for Producing Tetrakisphenolethanes. JP Patent, JP2016199488, 2016-12-01

  76. Li Y, Kijima T, Izumi T. J Organomet Chem, 2003, 687: 12–15

    Article  CAS  Google Scholar 

  77. Pan FF, Guo P, Huang X, Shu XZ. Synthesis, 2021, 53: 3094–3100

    Article  CAS  Google Scholar 

  78. Pratt EF, Suskind SP. J Org Chem, 1963, 28: 638–642

    Article  CAS  Google Scholar 

  79. Cao D, Li CC, Zeng H, Peng Y, Li CJ. Nat Commun, 2021, 12: 3729–3736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhao Z, Zhang H, Lam JWY, Tang BZ. Angew Chem Int Ed, 2020, 59: 9888–9907

    Article  CAS  Google Scholar 

  81. Ju B, Chen S, Kong W. Org Lett, 2019, 21: 9343–9347

    Article  PubMed  CAS  Google Scholar 

  82. Johnson J, Rovis T. Angew Chem Int Ed, 2008, 47: 840–871

    Article  CAS  Google Scholar 

  83. Derosa J, Kleinmans R, Tran VT, Karunananda MK, Wisniewski SR, Eastgate MD, Engle KM. J Am Chem Soc, 2018, 140: 17878–17883

    Article  PubMed  CAS  Google Scholar 

  84. Wu Z, Fatuzzo N, Dong G. J Am Chem Soc, 2020, 142: 2715–2720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mei TS, Patel HH, Sigman MS. Nature, 2014, 508: 340–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22171079), the Natural Science Foundation of Shanghai (21ZR1480400), the Shanghai Rising-Star Program (20QA1402300), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX03), the Program of Introducing Talents of Discipline to Universities (B16017), the Fundamental Research Funds for the Central Universities. Y.C. thanks Prof. Weijun Zhao (East China University of Science and Technology) for insightful discussion. The authors thank the Analysis and Testing Center of East China University of Science and Technology for help with NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1780_MOESM1_ESM.pdf

Pd-catalyzed diastereoselective 1,1-diarylation of 1,1-disubstituted alkenes enabling the modular synthesis of 1,1,2,2-tetraarylethanes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xi, Y., Qu, J. et al. Pd-catalyzed diastereoselective 1,1-diarylation of 1,1-disubstituted alkenes enabling the modular synthesis of 1,1,2,2-tetraarylethanes. Sci. China Chem. 66, 3539–3545 (2023). https://doi.org/10.1007/s11426-023-1780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1780-2

Navigation