Skip to main content
Log in

Single thiolate replacement of metal nanoclusters

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Surface thiolates play important roles in evincing the structures and properties of thiolated metal nanoclusters—one type of recently emerging inorganic-organic hybrids, and thus the thiolate substitution, especially single thiolate substitution, is highly desirable for subtly tailoring the structures and properties of metal nanoclusters. However, such a single-thiolate substituting is challenging, and its influence on the metal-metal and metal-sulfur bonds remains mysterious due to the absence of the single-thiolate-substituted structure. Here, we developed a combined method, concurrently synthesized the single-thiolate-substituted nanocluster and its parent nanocluster, and successfully resolved their structures by single crystal X-ray crystallography, which reveals that the single thiolate substitute has an obvious influence on the metal-metal and metal-sulfur bond lengths although it has no effect on the absorption profile. Interestingly, the metal-metal and metal-sulfur bonds show various thermal extensibility and even the negative thermal expansion phenomena of the Au–S bond were observed in the single-thiolate-substituted nanocluster. The bond length-related stability was also observed. Overall, this study highlights a novel synthesis method and offers novel structural insights and an in-depth structure-property correlation of thiolated metal nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakraborty I, Pradeep T. Chem Rev, 2017, 117: 8208–8271

    Article  PubMed  CAS  Google Scholar 

  2. Liu L, Corma A. Chem Rev, 2018, 118: 4981–5079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Matus MF, Häkkinen H. Nat Rev Mater, 2023, 8: 372–389

    Article  ADS  CAS  Google Scholar 

  4. Jin R, Li G, Sharma S, Li Y, Du X. Chem Rev, 2021, 121: 567–648

    Article  PubMed  CAS  Google Scholar 

  5. Xia N, Wu Z. Chem Sci, 2021, 12: 2368–2380

    Article  CAS  Google Scholar 

  6. Si WD, Li YZ, Zhang SS, Wang S, Feng L, Gao ZY, Tung CH, Sun D. ACS Nano, 2021, 15: 16019–16029

    Article  PubMed  CAS  Google Scholar 

  7. Zhang M, Li K, Zang S. Adv Opt Mater, 2020, 8: 1902152

    Article  CAS  Google Scholar 

  8. Guan Z, Li J, Hu F, Wang Q. Angew Chem Int Ed, 2022, 61: e202209725

    Article  CAS  Google Scholar 

  9. Ma X, Ma G, Qin L, Chen G, Chen S, Tang Z. Sci China Chem, 2020, 63: 1777–1784

    Article  CAS  Google Scholar 

  10. Zhang SS, Liu RC, Zhang XC, Feng L, Xue QW, Gao ZY, Tung CH, Sun D. Sci China Chem, 2021, 64: 2118–2124

    Article  CAS  Google Scholar 

  11. Hirai H, Takano S, Nakashima T, Iwasa T, Taketsugu T, Tsukuda T. Angew Chem Int Ed, 2022, 61: e202207290

    Article  ADS  CAS  Google Scholar 

  12. Sun Y, Cai X, Hu W, Liu X, Zhu Y. Sci China Chem, 2021, 64: 1065–1075

    Article  CAS  Google Scholar 

  13. Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D. J Am Chem Soc, 2015, 137: 8244–8250

    Article  PubMed  CAS  Google Scholar 

  14. Zhou M, Higaki T, Hu G, Sfeir MY, Chen Y, Jiang D, Jin R. Science, 2019, 364: 279–282

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Zhuang S, Chen D, Liao L, Zhao Y, Xia N, Zhang W, Wang C, Yang J, Wu Z. Angew Chem Int Ed, 2020, 59: 3073–3077

    Article  CAS  Google Scholar 

  16. Ghosh A, Mohammed OF, Bakr OM. Acc Chem Res, 2018, 51: 3094–3103

    Article  PubMed  CAS  Google Scholar 

  17. Kang X, Li Y, Zhu M, Jin R. Chem Soc Rev, 2020, 49: 6443–6514

    Article  PubMed  Google Scholar 

  18. Liu X, Cai X, Zhu Y. Acc Chem Res, 2023, 56: 1528–1538

    Article  PubMed  CAS  Google Scholar 

  19. Heinecke CL, Ni TW, Malola S, Mäkinen V, Wong OA, Häkkinen H, Ackerson CJ. J Am Chem Soc, 2012, 134: 13316–13322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sels A, Salassa G, Pollitt S, Guglieri C, Rupprechter G, Barrabés N, Bürgi T. J Phys Chem C, 2017, 121: 10919–10926

    Article  CAS  Google Scholar 

  21. Deng G, Malola S, Yan J, Han Y, Yuan P, Zhao C, Yuan X, Lin S, Tang Z, Teo BK, Häkkinen H, Zheng N. Angew Chem Int Ed, 2018, 57: 3421–3425

    Article  CAS  Google Scholar 

  22. Narouz MR, Osten KM, Unsworth PJ, Man RWY, Salorinne K, Ta-kano S, Tomihara R, Kaappa S, Malola S, Dinh CT, Padmos JD, Ayoo K, Garrett PJ, Nambo M, Horton JH, Sargent EH, Häkkinen H, Tsukuda T, Crudden CM. Nat Chem, 2019, 11: 419–425

    Article  PubMed  CAS  Google Scholar 

  23. Cao Y, Fung V, Yao Q, Chen T, Zang S, Jiang D, Xie J. Nat Commun, 2020, 11: 5498

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  24. Bootharaju MS, Lee S, Deng G, Malola S, Baek W, Häkkinen H, Zheng N, Hyeon T. Angew Chem Int Ed, 2021, 60: 9038–9044

    Article  CAS  Google Scholar 

  25. Zhang S, Li Y, Feng L, Xue Q, Gao Z, Tung C, Sun D. Nano Res, 2021, 14: 3343–3351

    Article  ADS  CAS  Google Scholar 

  26. Suzuki W, Takahata R, Chiga Y, Kikkawa S, Yamazoe S, Mizuhata Y, Tokitoh N, Teranishi T. J Am Chem Soc, 2022, 144: 12310–12320

    Article  PubMed  CAS  Google Scholar 

  27. Zhao J, Ziarati A, Rosspeintner A, Wang Y, Bürgi T. Chem Sci, 2023

  28. Liu C, Zhao Y, Zhang TS, Tao CB, Fei W, Zhang S, Li MB. Nat Commun, 2023, 14: 3730

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  29. Zeng C, Liu C, Pei Y, Jin R. ACS Nano, 2013, 7: 6138–6145

    Article  PubMed  CAS  Google Scholar 

  30. Zeng C, Chen Y, Das A, Jin R. J Phys Chem Lett, 2015, 6: 2976–2986

    Article  PubMed  CAS  Google Scholar 

  31. Kang X, Zhu M. Chem Mater, 2019, 31: 9939–9969

    Article  CAS  Google Scholar 

  32. Wang Y, Bürgi T. Nanoscale Adv, 2021, 3: 2710–2727

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  33. Niihori Y, Kikuchi Y, Kato A, Matsuzaki M, Negishi Y. ACS Nano, 2015, 9: 9347–9356

    Article  PubMed  CAS  Google Scholar 

  34. Yan N, Xia N, Wu Z. Small, 2021, 17: 2000609

    Article  CAS  Google Scholar 

  35. Gan Z, Xia N, Wu Z. Acc Chem Res, 2018, 51: 2774–2783

    Article  PubMed  CAS  Google Scholar 

  36. Wu Z, Suhan J, Jin R. J Mater Chem, 2009, 19: 622–626

    Article  CAS  Google Scholar 

  37. Häkkinen H. Nat Chem, 2012, 4: 443–455

    Article  PubMed  Google Scholar 

  38. Yao C, Lin Y, Yuan J, Liao L, Zhu M, Weng L, Yang J, Wu Z. J Am Chem Soc, 2015, 137: 15350–15353

    Article  PubMed  CAS  Google Scholar 

  39. Fei W, Antonello S, Dainese T, Dolmella A, Lahtinen M, Rissanen K, Venzo A, Maran F. J Am Chem Soc, 2019, 141: 16033–16045

    Article  PubMed  CAS  Google Scholar 

  40. Feng L, Zhu ZM, Yang Y, He Z, Zou J, Li MB, Zhao Y, Wu Z. Acta Physico Chim Sin, 2023, 0: 2305029

    Article  Google Scholar 

  41. Yan N, Xia N, Liao L, Zhu M, Jin F, Jin R, Wu Z. Sci Adv, 2018, 4: eaat7259

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  42. Evans JSO. J Chem Soc Dalton Trans, 1999, 3317–3326

  43. Barrera GD, Bruno JAO, Barron THK, Allan NL. J Phys-Condens Matter, 2005, 17: R217–R252

    Article  ADS  CAS  Google Scholar 

  44. Tong P, Wang BS, Sun YP. Chin Phys B, 2013, 22: 067501

    Article  ADS  Google Scholar 

  45. Chen J, Hu L, Deng J, Xing X. Chem Soc Rev, 2015, 44: 3522–3567

    Article  PubMed  CAS  Google Scholar 

  46. Liu Z, Gao Q, Chen J, Deng J, Lin K, Xing X. Chem Commun, 2018, 54: 5164–5176

    Article  CAS  Google Scholar 

  47. Takenaka K. Front Chem, 2018, 6: 267

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  48. Liang E, Sun Q, Yuan H, Wang J, Zeng G, Gao Q. Front Phys, 2021, 16: 53302

    Article  ADS  Google Scholar 

  49. van Schilfgaarde M, Abrikosov IA, Johansson B. Nature, 1999, 400: 46–49

    Article  ADS  CAS  Google Scholar 

  50. Goodwin AL, Calleja M, Conterio MJ, Dove MT, Evans JSO, Keen DA, Peters L, Tucker MG. Science, 2008, 319: 794–797

    Article  PubMed  ADS  CAS  Google Scholar 

  51. Lin J, Tong P, Zhang K, Ma X, Tong H, Guo X, Yang C, Wu Y, Wang M, Lin S, Song W, Sun Y. Compos Sci Tech, 2017, 146: 177–182

    Article  CAS  Google Scholar 

  52. Yu C, Lin K, Chen X, Jiang S, Cao Y, Li W, Chen L, An K, Chen Y, Yu D, Kato K, Zhang Q, Gu L, You L, Kuang X, Wu H, Li Q, Deng J, Xing X. Nat Commun, 2023, 14: 3135

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21925303, 21829501, 21771186, 22171268, 22171267, 21971246), the Anhui Provincial Natural Science Foundation (2108085MB56), the HFIPS Director’s Fund (BJPY2019A02, YZJJ202102, YZJJ202306-TS) and the Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Sciences (2020HSC-CIP005, 2022HSC-CIP018). Ambreen thanks Mr Z. Gan and Mr S. Ji for their help and supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Xia or Zhikun Wu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambreen, A., Zhou, Y., Gu, W. et al. Single thiolate replacement of metal nanoclusters. Sci. China Chem. 67, 523–528 (2024). https://doi.org/10.1007/s11426-023-1775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1775-y

Navigation